99国产精品欲av蜜臀,可以直接免费观看的AV网站,gogogo高清免费完整版,啊灬啊灬啊灬免费毛片

網(wǎng)易首頁(yè) > 網(wǎng)易號(hào) > 正文 申請(qǐng)入駐

鄭剛教授:靶向炎癥的治療策略——2型糖尿病合并心肌梗死管理新機(jī)遇

0
分享至


在過(guò)去的30 年中,全球糖尿病(DM)的患病率顯著增加,從1990年的2億增加了一倍多,到2025年估計(jì)將超過(guò)5 億[1]。這對(duì)心肌梗死(MI)有重要的影響,而MI是DM患者最常見(jiàn)的死亡原因之一[2]。不僅DM患者的MI發(fā)病率增加,而且MI后的結(jié)果一直更差。DM患者的短期和長(zhǎng)期死亡率較高,MI后再梗死,心力衰竭(HF),心源性休克和心律失常發(fā)生率高[3-8]。 MI治療進(jìn)展大大降低了院內(nèi)死亡率,從 1960 年代的30%[9]降至當(dāng)代再灌注時(shí)代的< 7%[10]。然而,盡管治療和總體生存率有所改善,但DM患者的死亡率仍叫無(wú)DM患者增加 1.5~2 倍[11]。

重要的是,盡管在治療和總體生存方面取得了進(jìn)展,但近幾十年來(lái)這種差異一直保持一致。出現(xiàn)了一些假設(shè)來(lái)解釋這種增加的風(fēng)險(xiǎn),例如梗死面積或冠狀動(dòng)脈疾病嚴(yán)重程度的差異。本文回顧并重新評(píng)估MI后DM患者不良預(yù)后的證據(jù),重點(diǎn)是如何針對(duì)炎癥過(guò)程提供未探索的,但有價(jià)值的機(jī)會(huì),以改善該脆弱患者群體的心血管預(yù)后。


流行病學(xué)

在保守治療的時(shí)代,沒(méi)有再灌注治療相關(guān)嘗試,MI后DM患者的院內(nèi)死亡率為 60.8% ,是非DM患者的兩倍[12]。在冠狀動(dòng)脈監(jiān)護(hù)病房(CCU)出現(xiàn)后,一項(xiàng)對(duì)832人的研究發(fā)現(xiàn),在急性心肌梗死(AMI)后的第一個(gè)月,20.2% 的非DM患者和42.0%的DM患者死亡[13] 。在再灌注治療中,GUSTO-1 研究發(fā)現(xiàn),在ST段抬高型心肌梗死(STEMI)患者中,DM患者 30 天的死亡率為 10.5%,而無(wú)DM患者為6.2%[14]。在GRACE 注冊(cè)試驗(yàn)的患者中,DM 患者合并STEMI和非ST段抬高型心肌梗死 (NSTEMI)患者的院內(nèi)死亡率較高(分別為11.7% vs 6.4%和6.3% vs 5.1%)[15]。

在當(dāng)今常規(guī)侵入性冠脈造影和經(jīng)皮冠狀動(dòng)脈介入治療(PCI)時(shí)代,2005年至2013年對(duì)12270人(4388例DM患者)進(jìn)行的一項(xiàng)單中心研究顯示,DM患者的30天和1年死亡率顯著增加(分別為13.5% vs 4.3%和25.7% vs 12.4%)[16]。PROSPECT II試驗(yàn)的一個(gè)子研究顯示,DM患者的主要不良心血管事件(MACE) 增加了2倍[17]。同樣,HORIZONS-AMI 研究發(fā)現(xiàn),在 30 天時(shí),新診斷和確診的DM患者的死亡率較高(4.5% vs 1.8%)[18]。絕大多數(shù)DM患者患有2型糖尿病(T2DM),因此,大多數(shù)研究沒(méi)有足夠的效力來(lái)探究1型糖尿病(T1DM)對(duì)預(yù)后的影響。然而,Kerola 等[19]對(duì)芬蘭20家醫(yī)院的調(diào)查顯示,對(duì)于MI后患者,合并T1DM患者的30天和1年死亡率均較高 (分別為12.8% vs 8.5%和24.3% vs 16.8%),這一趨勢(shì)在不同亞組(有或無(wú)HF,有或無(wú)STEMI,有或無(wú)血運(yùn)重建)中仍成立。因此,雖然潛在的病理生理學(xué)有所不同,但T1DM和T2DM似乎均對(duì)MI后患者的預(yù)后產(chǎn)生負(fù)面影響。

高血糖是T1DM和T2DM的主要特征,AMI患者入院時(shí)血糖水平升高與患者預(yù)后不良有關(guān)[20]。在再灌注治療之前,溶栓劑使用[21]以及再灌注治療時(shí)代,這一點(diǎn)已被充分證實(shí)[22]。 一項(xiàng)薈萃分析納入了超過(guò) 20000名STEMI患者(23%為DM,但未指定類型))接受直接PCI治療,顯示入院高血糖(AH)與30天和長(zhǎng)期隨訪的死亡率較高有關(guān)。值得注意的是,AH在以前沒(méi)有發(fā)現(xiàn)DM的人群中很常見(jiàn),特別是對(duì)于那些既往有MI、多支血管冠狀動(dòng)脈疾病 (CAD)和左前降支梗死的人群[23]。盡管有這些長(zhǎng)期的觀察結(jié)果,但在回答圍繞急性冠脈綜合征(ACS)高血糖的關(guān)鍵問(wèn)題方面進(jìn)展甚微,其中最為重要的是高血糖是否為不良結(jié)果的介質(zhì)或標(biāo)志物[24]。大多數(shù)關(guān)于MI預(yù)后的臨床研究沒(méi)有區(qū)分T1DM和 T2DM。從相對(duì)患病率推斷,大多數(shù)研究主要包括 T2DM患者。在本文中除另行說(shuō)明外,其他均指T2DM患者。

糖尿病持續(xù)時(shí)間的影響

在心血管風(fēng)險(xiǎn)評(píng)估中,通常考慮(以二元方式)給定患者是否患有DM。事實(shí)上,這種關(guān)注可能掩蓋了包括:①DM的持續(xù)時(shí)間,②血糖控制質(zhì)量和 ③治療在內(nèi)的重要因素的異質(zhì)性。

在T2DM中,病程與死亡風(fēng)險(xiǎn)相關(guān)。在 2010 年1月至 2019 年12月期間,分析了意大利近14萬(wàn)名STEMI或NSTEMI住院患者的區(qū)域數(shù)據(jù)[25]。研究者根據(jù)疾病持續(xù)時(shí)間將DM患者進(jìn)一步分為三組:<5 年,5~10 年和 > 10年。在他們的分析(包括調(diào)整年齡)中,住院死亡率隨著DM的持續(xù)時(shí)間而增加,與沒(méi)有DM的人相比,受影響超過(guò)10年的人的風(fēng)險(xiǎn)最高(OR = 1.59)。這表明T2DM的不良結(jié)果可能不僅反映MI時(shí)的代謝狀態(tài),而且反映了隨時(shí)間推移的病理特征的累積。同樣,對(duì)糖化血紅蛋白(HbA1c)相關(guān)研究的薈萃分析 (n = 25 項(xiàng)研究和> 30萬(wàn)名患者) 表明,即使并未確診T2MD,長(zhǎng)期血糖高水平也與ACS后患者的預(yù)后較差相關(guān)[26]。

糖尿病治療的影響

DM對(duì)MI后患者預(yù)后的影響也可通過(guò)特定的治療來(lái)改變。在GRACE注冊(cè)表中,與接受其他DM治療的患者相比,需要胰島素治療的STEMI患者在急性住院期間死亡、HF、心源性休克和腎功能衰竭的風(fēng)險(xiǎn)增加[15]。同樣,對(duì)包括超過(guò)7000 名AMI和DM參與者在內(nèi)的四項(xiàng)隨機(jī)對(duì)照試驗(yàn)的匯總分析也顯示,在隨訪2年期間,與沒(méi)有DM的受試者相比,未接受胰島素治療的DM患者的心血管死亡風(fēng)險(xiǎn)增加 (HR=1.25),但進(jìn)行胰島素治療的DM患者的心血管風(fēng)險(xiǎn)增加幅度更高 (HR=1.49)[27]。在 SWEDEHEART 登記處,與單獨(dú)飲食治療的 DM 患者相比,接受胰島素單藥治療的 DM 患者平均隨訪 3.4 年,死亡率、MI、卒中和HF綜合評(píng)分的風(fēng)險(xiǎn)增加(HR=1.32)[28]。然而,盡管這些研究顯示了一致的模式,但這可能不一定是由于胰島素治療,而是可能反映了混雜因素,例如長(zhǎng)期或控制不佳的DM對(duì)口服降血糖藥物沒(méi)有反應(yīng)。

二甲雙胍是T2D常用的一線口服降血糖藥。在MI的實(shí)驗(yàn)?zāi)P椭校凶C據(jù)表明二甲雙胍改善心血管功能并減少梗死面積[29]。一項(xiàng)觀察性研究顯示,二甲雙胍的使用與較低的肌酸激酶-肌鈣蛋白水平有關(guān)[30],但這種相同的效果在其他地方?jīng)]有顯示出來(lái)[31]。在SWEDEHEART注冊(cè)研究中,與單獨(dú)進(jìn)行飲食治療的DM患者相比,使用二甲雙胍單藥治療的患者有較低的MACE風(fēng)險(xiǎn)(HR=0.92)[28]。然而,由于迄今為止沒(méi)有大型隨機(jī)對(duì)照試驗(yàn),沒(méi)有明確的證據(jù)表明二甲雙胍在改善MI后的結(jié)局方面具有因果關(guān)系。同樣,沒(méi)有強(qiáng)效的證據(jù)表明磺脲類藥物的使用有效以及其對(duì)MI預(yù)后的可能影響。在對(duì) 188 名MI和DM患者的觀察性研究研究中,Garratt 等[32]發(fā)現(xiàn),經(jīng)過(guò)多變量調(diào)整后,磺脲類藥物的使用是早期死亡率的獨(dú)立預(yù)測(cè)因子 (HR=2.77)。然而,其他研究未能顯示這種關(guān)聯(lián)[33-36]。

雖然沒(méi)有明確的隨機(jī)對(duì)照試驗(yàn)證實(shí)傳統(tǒng)降糖藥物對(duì)MI預(yù)后的影響,未來(lái)也不太可能進(jìn)行相關(guān)試驗(yàn),但近年來(lái)對(duì)新型降糖藥物,特別是鈉葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白 2 (SGLT2)抑制劑對(duì)MI預(yù)后影響的興趣越來(lái)越大。SGLT2抑制劑對(duì)T2DM患者的心血管預(yù)后有益。在EMPA-REG OUTOUT試驗(yàn)中,與安慰劑相比,每日一次恩格列凈(empagliflozin)的使用與心血管原因死亡(HR=0.62)和因HF住院率(HR=0.68)降低顯著相關(guān),無(wú)論 HbA1c 降低如何[37]。

隨后,其他 SGLT2 抑制劑包括卡格列凈(canagliflozin)[38-39],達(dá)格列凈(dapagliflozin)[40]和埃格列凈(ertugliflozin)[41] 的隨機(jī)臨床試驗(yàn)都與T2DM患者HF住院風(fēng)險(xiǎn)降低有關(guān),表現(xiàn)出一致的類效應(yīng)。

此外,在 DAPA-HF試驗(yàn)[42]中,對(duì)于左室射血分?jǐn)?shù)(LVEF)≤40%的心衰患者,達(dá)格列凈與 HF惡化風(fēng)險(xiǎn)降低(HR=0.70)和心血管死亡風(fēng)險(xiǎn)降低(HR=0.82)相關(guān)。DELIVER-TRIAL試驗(yàn)還表明,達(dá)格列凈的有益作用已經(jīng)延伸到了射血分?jǐn)?shù)輕度降低或保留的心衰患者[43]。重要的是,在兩項(xiàng)試驗(yàn)中,這些益處均與是否合并DM無(wú)關(guān)。SGLT2 抑制劑發(fā)揮其心血管作用的機(jī)制尚不清楚,但其潛在機(jī)制已在相關(guān)文章中闡述[44-45],SGLT2抑制劑可能影響炎癥過(guò)程和動(dòng)脈粥樣硬化斑塊。一項(xiàng)觀察性研究納入了接受PCI的T2DM和多支非阻塞性冠狀動(dòng)脈病變患者,研究發(fā)現(xiàn)使用SGLT2 抑制劑與較高的最薄纖維帽厚度 (FCT)(斑塊易損性的測(cè)量)和較低的炎癥臨床測(cè)量值[如白細(xì)胞計(jì)數(shù)、高敏感性C反應(yīng)蛋白 (hs-CRP)、白細(xì)胞介素-6(IL-6)和腫瘤壞死因子-α(TNF-α)]相關(guān)[46]。

大量研究中一致的心血管獲益提示SGLT2抑制劑或可使MI后早期患者獲益[47]。在納入377名接受PCI的T2DM和AMI患者的觀察性研究中,無(wú)論患者的血糖狀況如何,SGLT2抑制劑使用均與改善預(yù)后相關(guān)[48]。也有證據(jù)表明,在 T2D 患者中,使用 SGLT2 抑制劑與 MI 后新發(fā)心律失常的風(fēng)險(xiǎn)較低有關(guān)。

最近的一項(xiàng)隨機(jī)對(duì)照試驗(yàn)探究了SGLT2 抑制劑在 MI 后急性期的作用[49]。在該試驗(yàn)中,476 名AMI患者(包括13%的 T2D 患者)被隨機(jī)分配到每日一次的恩格列凈或安慰劑中,在 PCI術(shù)后72小時(shí)內(nèi)服用 26 周。研究顯示,恩格列凈使用與平均 N 末端 B 型利鈉肽前體(NT-proBNP)水平和LVEF顯著改善有關(guān),且這些變化在幾周內(nèi)就很明顯[50]。EMMY 試驗(yàn)的事后分析顯示,與安慰劑相比,恩格列凈沒(méi)有顯著降低全身炎癥標(biāo)志物,如IL-6、hs-CRP、嗜中性粒細(xì)胞計(jì)數(shù)、白細(xì)胞計(jì)數(shù)和嗜中性粒細(xì)胞/淋巴細(xì)胞比率[51]。在DAPA-MI試驗(yàn)[52]探究了達(dá)格列凈對(duì)心血管死亡率或心衰發(fā)生的影響,但該研究的事件發(fā)生率較低、除外了高危人群,且隨訪時(shí)間較短,效力或不足。EMPACT-MI平均隨訪17.9個(gè)月顯示,與安慰劑相比,恩格列凈治療并沒(méi)有顯著降低首次住院或因任何原因死亡的風(fēng)險(xiǎn)[53]。

盡管總體死亡率已經(jīng)下降,但與T2DM相關(guān)的風(fēng)險(xiǎn)仍持續(xù)增加[3],提示對(duì)T2DM認(rèn)識(shí)的必要性和緊迫性。首先,為什么進(jìn)行了當(dāng)代T2DM治療,但AMI的預(yù)后更差預(yù)后;其次,該如何改變這些結(jié)局。

下文將重新分析相關(guān)風(fēng)險(xiǎn)的潛在機(jī)制,并評(píng)估最新數(shù)據(jù),以探索針對(duì)這一人群風(fēng)險(xiǎn)的新機(jī)會(huì)。

早期死亡率增加的潛在原因

在考慮早期死亡率增加的潛在原因時(shí),探究造成DM患者M(jìn)I后死亡的機(jī)制是有用的。據(jù)我們所知,還沒(méi)有研究專門調(diào)查DM患者M(jìn)I后的死亡機(jī)制,也沒(méi)有研究詢問(wèn)與沒(méi)有DM的人相比,是否存在不同分布的特定致命表現(xiàn)。

雖然死亡率是一個(gè)明確的終點(diǎn),但確定MI后人們死亡的確切機(jī)制是具有挑戰(zhàn)性的;且僅有少數(shù)人進(jìn)行尸檢,因此死亡證明的數(shù)據(jù)是常常不準(zhǔn)確[54] ,似乎不太可能對(duì)了解DM的不良風(fēng)險(xiǎn)有啟發(fā)作用。

1.梗死面積及LVEF

梗死面積的大小與不良預(yù)后具有一定的相關(guān)性[55,56]。DM患者往往有不太嚴(yán)重或非典型的MI癥狀[57] ,或?qū)е聦で笞o(hù)理、診斷和治療的延遲,從而導(dǎo)致梗死面積增大。梗死面積與死亡率密切相關(guān)[58] ,限制心肌損傷已成為推動(dòng)有效再灌注治療的關(guān)鍵臨床優(yōu)先事項(xiàng)。

然而,對(duì)梗死面積的量化并不能明確支持DM有助于梗死面積的增大。心肌磁共振(CMR)是心肌組織非侵入性評(píng)估的金標(biāo)準(zhǔn),包括MI后確定梗死面積[59]。對(duì)92名MI患者(包括22名DM患者)進(jìn)行的CMR研究表明,DM患者的晚期釓增強(qiáng) (平均左室瘢痕百分比,25.6% vs 15.8%)測(cè)量的梗死面積較大[55] ,然而本研究為觀察性,樣本量較小,效力或不足。

隨后的 CMR研究未能顯示類似的關(guān)聯(lián)[60-61]。Eitel 等[60]研究了 411 名接受直接PCI的 STEMI 患者的 DM 與梗死面積之間的關(guān)系。研究顯示,DM患者的MACE風(fēng)險(xiǎn)增加了3倍,即使梗死面積相似(左室瘢痕百分比 18.2 vs 18.2%)。有趣的是,預(yù)后不良與較大的梗死面積有關(guān),但在DM患者中這種關(guān)聯(lián)性較弱。Reinstadler等[61]的一項(xiàng)研究(792例STEMI患者)發(fā)現(xiàn),有或無(wú) DM 患者的梗死面積或心肌挽救指數(shù)沒(méi)有顯著差異。

此外,除梗死面積外,LVEF降低也是MI后死亡率的預(yù)測(cè)因子[62] ,但是LVEF在有/無(wú)DM患者之間是可比較的[55,56,61]。因此,似乎梗死面積和LVEF的差異都不足以解釋T2D對(duì)MI后不良預(yù)后的影響。

2.動(dòng)脈粥樣硬化負(fù)擔(dān)

ACS患者通常接受侵入性冠狀動(dòng)脈造影,但冠狀動(dòng)脈造影為腔內(nèi)檢查,從而限制了動(dòng)脈粥樣硬化的定量分析和斑塊組成的測(cè)定,這反過(guò)來(lái)影響斑塊的生物學(xué)特性,尤其是侵蝕或破裂的傾向。更詳細(xì)的斑塊成分可以使用血管內(nèi)成像光學(xué)相干斷層掃描 (OCT)和血管內(nèi)超聲(IVUS)獲得。

DM患者冠心病的患病率較高[63],人們普遍認(rèn)為DM與更嚴(yán)重和更廣泛的冠心病有關(guān)。Niccoli 等[64]的研究比較了伴或不伴DM的ACS患者的多支血管病變情況,提示合并DM組患者的多支血管疾病發(fā)生率更高(68% vs 42%)。

同樣,PROSPECT I 試驗(yàn)的一項(xiàng)子研究(IVUS測(cè)量)顯示,合并DM的ACS患者具有更長(zhǎng)的冠狀動(dòng)脈病變(12.0 vs 10.7 mm)[65]。另一項(xiàng)主要納入穩(wěn)定型冠心病患者的研究(CT測(cè)量)顯示,與不合并DM的患者相比,合并DM患者的混合冠脈斑塊數(shù)量更高(1.67 vs 1.23),但所有類型的斑塊(鈣化、非鈣化和混合)數(shù)量在兩組之間無(wú)顯著差異[66]。

然而,由于不同的研究采用的定量方法有所不同,因此不同研究中冠心病(CAD)患者的嚴(yán)重程度可能無(wú)法比較。此外,應(yīng)用IVUS、OCT和/或其他侵入性冠脈測(cè)量方法的研究或包含對(duì)復(fù)雜和彌漫性狹窄CAD患者的固有選擇偏倚。在 PROSPECT II試驗(yàn)中,有/無(wú)DM患者的平均SYNTAX評(píng)分也沒(méi)有顯著差異[17]。因此,盡管CAD類型和嚴(yán)重程度或與DM患者的死亡率增加有關(guān)[67] ,但相關(guān)性或并不明顯。

PROSPECT II試驗(yàn)[68]顯示,高脂質(zhì)含量(OR=3.80)和高斑塊負(fù)荷(OR=5.37) 是非罪犯病變MACE(定義為心源性死亡、MI、不穩(wěn)定型心絞痛或進(jìn)行性心絞痛的復(fù)合事件)的獨(dú)立預(yù)測(cè)因子。PROSPECT II的一項(xiàng)亞組分析試驗(yàn)顯示,與無(wú)DM患者相比,盡管DM患者進(jìn)行了支架和/或藥物治療,但其MACE發(fā)生率仍增加了1倍(OR=1.94),這主要是由非罪犯病變中的自發(fā)性MI以及罪犯病變的再狹窄所致[68]。DM是非罪犯病變MACE的獨(dú)立預(yù)測(cè)因子(OR=2.47),但似乎不影響罪犯病變的MACE。此外,在有無(wú)DM的人群中[17],罪犯和非罪犯病變的斑塊特征(脂質(zhì)含量和斑塊負(fù)荷)是相似的,基線和殘留SYNTAX評(píng)分沒(méi)有差異。

Sugiyama等[69]的報(bào)道(OCT檢測(cè))提示,在ACS時(shí),DM患者具有更廣泛的CAD和更 “脆弱”的斑塊。然而,正如Ali等[70]所強(qiáng)調(diào)的那樣,OCT對(duì)“脆弱”斑塊的確定受到觀察者間對(duì)于帽厚度和脂質(zhì)弧測(cè)量的適度一致性的限制,再加上TCFA患者的每個(gè)病變事件發(fā)生率極低。雖然MI時(shí)冠心病的負(fù)擔(dān)在DM患者中可能更重,但這并無(wú)法說(shuō)明DM對(duì)MI后患者預(yù)后的影響。

GUSTO血管造影試驗(yàn)[71]比較了隨機(jī)接受四種不同溶栓方案的2431例STEMI患者的基線血管造影差異,發(fā)現(xiàn)DM患者的多支血管病變頻率更高,梗死相關(guān)動(dòng)脈的參考直徑明顯更小,但在校正多支血管病變和90分鐘MI溶栓(TIMI)后,DM 仍然是30 天死亡率的獨(dú)立預(yù)測(cè)因子。然而,這項(xiàng)研究應(yīng)用的衡量標(biāo)準(zhǔn)相對(duì)粗糙(有無(wú)多支血管病變),且未調(diào)查冠脈斑塊的組成。

總體而言,這些研究表明,通過(guò)侵入性血管造影、血管內(nèi)成像或心臟CT等方法定量描述斑塊范圍、形態(tài)和病變復(fù)雜性差異無(wú)法充分解釋DM患者M(jìn)ACE風(fēng)險(xiǎn)增加的原因。

3.心肌灌注和冠狀動(dòng)脈微血管功能障礙

有效、及時(shí)的再灌注治療是AMI預(yù)后的決定因素,主要與心外膜血管的通暢性和微血管系統(tǒng)的能力相關(guān)。即使進(jìn)行PCI治療改善了心外膜血管的通暢性,冠狀動(dòng)脈微血管功能障礙 (CMD)也可能延遲或阻止再灌注導(dǎo)致的持續(xù)性缺血和梗死。

冠狀動(dòng)脈微循環(huán)由直徑 <500μm 的微小動(dòng)脈和小動(dòng)脈組成,是調(diào)節(jié)心肌灌注的主要部位。雖然這些血管在目前的成像模式(包括侵入性動(dòng)脈造影)下是不可見(jiàn)的,但它們的功能可以通過(guò)生理測(cè)量來(lái)評(píng)估[72]。冠狀動(dòng)脈血流儲(chǔ)備(CFR)異常或心肌血流儲(chǔ)備(MFR)等指標(biāo),可測(cè)量應(yīng)激或最大充血時(shí)心肌血流量與靜息心肌血流量的比率,提供了在沒(méi)有心外膜狹窄的情況下 CMD 的定量定義。

重要的是,CMD影響MI后的預(yù)后,Kelshiker等[73]在他們的CFR和心血管預(yù)后系統(tǒng)綜述中表明,在急性和慢性冠狀動(dòng)脈綜合征中,CFR異常是MACE的預(yù)測(cè)因子。專門比較DM和非DM患者的研究很少,而且大多數(shù)是在癥狀穩(wěn)定而非AMI患者的情況下進(jìn)行的。

在一項(xiàng)單中心研究顯示,與非DM患者相比,DM患者的MFR異常更為普遍,且DM和MFR均為MACE的獨(dú)立預(yù)測(cè)因子[74]。同樣,另一項(xiàng)研究顯示,CFR < 2是DM患者M(jìn)ACE風(fēng)險(xiǎn)的預(yù)測(cè)指標(biāo)[75]。這些數(shù)據(jù)已經(jīng)在侵入性血管造影測(cè)量中得到復(fù)制,以確定CFR以及微循環(huán)阻力特異性指標(biāo),如微循環(huán)阻力指數(shù),充血性微血管阻力和微血管阻力儲(chǔ)備[76-79] ,表明DM患者(主要在穩(wěn)定型心絞痛的情況下) 更可能具有較低的 CFR(<2),盡管不一致,但微循環(huán)阻力指數(shù)較高。

一項(xiàng)納入144名T2DM患者的研究[80]顯示, DM 患者的微血管阻塞(MVO)更為普遍,或?qū)е滤劳雎蔬^(guò)高。對(duì)7項(xiàng)納入直接PCI的STEMI患者的隨機(jī)對(duì)照試驗(yàn)進(jìn)行的匯總分析發(fā)現(xiàn),在急性事件發(fā)生7天內(nèi)測(cè)量的MVO與HF的死亡率和住院率密切相關(guān)[81]。介入治療后,糖尿病患者 ST 段抬高不完全,CMR 測(cè)量的心肌紅斑分級(jí)降低[82],MVO 降低[83]。可以預(yù)期MVO通過(guò)增加梗死面積影響預(yù)后,但 MVO 是不良結(jié)局的獨(dú)立預(yù)測(cè)因子,即使在調(diào)整梗死面積后也是如此[81]。

總體而言,無(wú)論侵入性和非侵入性方法均表明,DM患者傾向于患有CMD,CFR是MACE的獨(dú)立預(yù)測(cè)因子,且STEMI后更易發(fā)生MVO。在MI后DM患者預(yù)后較差的情況下,這些發(fā)現(xiàn)可以反映:①損害再灌注或修復(fù)的冠脈微血管疾病和/或②加重AMI期間功能性微血管功能障礙或阻塞損害心肌再灌注。

4.糖尿病心肌病

DM 使HF[85-86]的風(fēng)險(xiǎn)增加 2 ~4 倍,這通常歸因于 “糖尿病心肌病”,這是指在沒(méi)有CAD,高血壓和DM個(gè)體中沒(méi)有顯著的瓣膜疾病的情況下心肌結(jié)構(gòu)和功能異常。MI后HF的風(fēng)險(xiǎn)增加也很明顯,例如在 SWEDEHEART注冊(cè)研究中,DM使MI后HF的風(fēng)險(xiǎn)增加了30%[87-88] 。糖尿病患者的心臟結(jié)構(gòu)改變包括心肌纖維化、心肌肥厚/重塑和微血管功能障礙[89]。 一項(xiàng) CMR相關(guān)研究顯示,28%的既往無(wú)MI臨床證據(jù)的DM患者有心肌瘢痕,且研究中大多數(shù)患者或?yàn)門2DM[90]。在該隊(duì)列中,心肌瘢痕的高發(fā)生率提示T2DM患者有無(wú)癥狀性梗死,或T2DM引起的纖維化。包括成纖維細(xì)胞增殖、神經(jīng)體液激活、促炎細(xì)胞因子產(chǎn)生、氧化應(yīng)激、心肌轉(zhuǎn)化生長(zhǎng)因子-β表達(dá)增加和晚期糖基化終產(chǎn)物(AGE)/AGE受體(RAGE)軸的激活在內(nèi)的多種機(jī)制或?qū)е翫M患者發(fā)生纖維化[91]。在DM患者中經(jīng)常觀察到心臟重塑[92-93],且由于僅少數(shù)患者進(jìn)行CMR檢查,因此心臟重塑很可能未被檢測(cè)到。

總體而言,糖尿病心肌病的潛在不同表現(xiàn)或可解釋DM患者為什么更容易受到MI的影響,如通過(guò)影響梗死區(qū)域或損傷遠(yuǎn)端心肌等。

5.性別對(duì)預(yù)后的影響

多項(xiàng)研究表明,MI后,女性的預(yù)后往往比男性更差,包括住院率[94]、因HF住院[88,95]、短期[96-100]和長(zhǎng)期死亡率[101-102]更高。然而,當(dāng)校正年齡,風(fēng)險(xiǎn)因素和合并癥等混雜因素時(shí),這種預(yù)后差距往往會(huì)減少或消失[96,99,102-103]。此外,女性在MI后更不可能及時(shí)接受指南推薦的藥物治療[98-100],提示這種預(yù)后差距并不完全由生物學(xué)性別差異解釋。

女性DM患者或?yàn)橐粋€(gè)極其脆弱的群體。一項(xiàng)觀察性研究探究了17154名PCI后患者的1年死亡率和MI發(fā)生率,提示女性DM患者的死亡和MI風(fēng)險(xiǎn)最高[104]。值得注意的是,女性非DM患者與男性DM患者的不良事件風(fēng)險(xiǎn)相似[101,105]。對(duì)于短期死亡率,既往一項(xiàng)納入48878名AMI患者的研究提示,在校正混雜因素后,18 ~45歲之間的女性DM患者的住院死亡風(fēng)險(xiǎn)并不高于男性[106]。

盡管如此,女性在臨床研究中代表性不足,在了解性別對(duì)MI預(yù)后的影響,包括其與DM的相互作用方面仍然存在許多知識(shí)差距。

識(shí)別和靶向炎癥的新興可能性

大量證據(jù)表明,在DM狀態(tài)下,細(xì)胞和分子反應(yīng)發(fā)生改變。其中,氧化應(yīng)激、血管生成和細(xì)胞能量改變已經(jīng)被很好的描述了。

MI后,過(guò)量產(chǎn)生的活性氧類 (ROS)可通過(guò)直接損傷DNA、脂質(zhì)、蛋白質(zhì)和線粒體,導(dǎo)致心肌細(xì)胞死亡增加,在介導(dǎo)缺血/再灌注損傷中起著至關(guān)重要的作用[107]。ROS 也可以觸發(fā)炎癥過(guò)程,例如激活核苷酸結(jié)合寡聚化結(jié)構(gòu)域,含有富亮氨酸重復(fù)結(jié)構(gòu)域的蛋白 3 (NLRP3)炎性體[108],Janus 激酶/信號(hào)傳導(dǎo)和轉(zhuǎn)錄激活因子(JAK-STAT)途徑[109]和核因子kappa B(NF-κB)途徑等。

DM患者表現(xiàn)出高NADPH氧化酶活性[110]和血管內(nèi)皮一氧化氮合酶功能受損,導(dǎo)致活性氧的產(chǎn)生升高[111]。在DM患者的心肌中也觀察到活性氧水平升高[112]。通過(guò)提供氧氣和營(yíng)養(yǎng)物質(zhì)來(lái)限制缺血,血管生成在促進(jìn)受損心肌的修復(fù)中也起著至關(guān)重要的作用[113]。白細(xì)胞的募集需要新的血管形成,白細(xì)胞是損傷和修復(fù)的重要介質(zhì)[113]。缺氧誘導(dǎo)因子1-α(HIF1-α)是血管生成的關(guān)鍵調(diào)節(jié)因子,心肌細(xì)胞中HIF1-α的表達(dá)增加,可增強(qiáng)心臟功能并減少M(fèi)I小鼠模型中的梗死面積[114]。眾所周知,高血糖會(huì)損害內(nèi)皮細(xì)胞中HIF1-α的穩(wěn)定性[115]。既往研究也顯示,與無(wú)DM者相比,T2DM患者的HIF1-α和血管內(nèi)皮生長(zhǎng)因子表達(dá)下降[116]。此外,與新型血管生成蛋白相關(guān)的其他途徑[117],缺陷內(nèi)皮祖細(xì)胞[118]和血管一氧化氮抵抗[119]都可能損害T2DM后MI患者的血管生成[120,121]。

改變心肌能量學(xué),可能影響MI后患者的預(yù)后。通常情況下,心臟使用多種底物,包括游離脂肪酸、葡萄糖、氨基酸和酮來(lái)產(chǎn)生三磷酸腺苷。然而,在T2DM患者中,心臟代謝的靈活性降低。高胰島素血癥和胰島素抵抗降低了葡萄糖利用率,增加了心肌的游離脂肪酸攝入量,導(dǎo)致毒性脂質(zhì)代謝物和活性氧的積累,最終導(dǎo)致心肌功能障礙[122]。

然而,其他先前被忽視的與炎癥過(guò)程有關(guān)的因素,似乎越來(lái)越相關(guān)和合理。循環(huán)炎癥標(biāo)志物,特別是高敏C反應(yīng)蛋白(hs-CRP),與各種臨床情況下的不良結(jié)果有關(guān)[123-126]。在CARE試驗(yàn)中,通過(guò)升高的CRP和血清淀粉樣蛋白 A (SAA)[127]測(cè)量的全身炎癥證據(jù)與MI后復(fù)發(fā)冠狀動(dòng)脈事件的風(fēng)險(xiǎn)增加有關(guān),但在T2DM患者中事件的比例較高。事實(shí)上,通常認(rèn)為CRP和SAA在T2DM患者中更高。近期Ridker等[128]對(duì)三項(xiàng)隨機(jī)臨床試驗(yàn)的薈萃分析顯示,hs-CRP 升高與未來(lái)事件的相關(guān)性較 “治療” LDL-C更強(qiáng)[129]。重要的是,該分析中的大多數(shù)人(76%)合并 T2DM。

總體而言,炎癥過(guò)程或?qū)е翫M患者的預(yù)后惡化。然而,“炎癥” 這個(gè)籠統(tǒng)的術(shù)語(yǔ)或無(wú)法提供足夠的信息。由肝臟合成和釋放的CRP代表了幾種梗死后相關(guān)炎癥過(guò)程的綜合下游作用,并且不足以描述復(fù)雜的分子和細(xì)胞炎癥過(guò)程[130]。關(guān)于特定分子途徑激活,互補(bǔ)(或競(jìng)爭(zhēng))細(xì)胞類型參與階段的功能相關(guān)信息,急性炎癥狀態(tài)與分辨率,甚至炎癥的精確位點(diǎn)目前在MI中沒(méi)有明確定義。因此,針對(duì)潛在易處理的炎癥過(guò)程的干預(yù)措施的最佳時(shí)機(jī)和性質(zhì)上是未知的。此外,針對(duì)炎癥過(guò)程需要考慮對(duì)MI的免疫反應(yīng)中的性別差異[131]。因此,我們將把重點(diǎn)放在機(jī)制上重要的,治療上易處理的炎癥過(guò)程上,并受到DM患者潛在干擾。

心梗后炎癥相關(guān)過(guò)程

MI引發(fā)局部和全身炎癥反應(yīng)。在心肌中,梗死后的炎癥反應(yīng)可分為三個(gè)階段: 報(bào)警階段、白細(xì)胞動(dòng)員階段和消退階段[122]。

在報(bào)警階段,死亡的心肌細(xì)胞和其他細(xì)胞釋放被稱為損傷相關(guān)分子模式 (DAMPs)的信號(hào),包括高遷移率組蛋白 B1[133]、熱休克蛋白[134]、S100A8/A9[135]和纖連蛋白[136]。DAMP與模式識(shí)別受體,如Toll 樣受體、核苷酸寡聚化結(jié)構(gòu)域樣受體和RAGE結(jié)合,激活先天性免疫通路[137]。可以在先天性免疫細(xì)胞內(nèi)激活的促炎信號(hào)傳導(dǎo)途徑,包括但不限于 (NLRP3)/IL-1β[138]、NFκB[139]和 JAK-STAT 信號(hào)傳導(dǎo)途徑[140]。

在白細(xì)胞動(dòng)員階段,白細(xì)胞迅速浸潤(rùn)缺血心肌。中性粒細(xì)胞是第一個(gè)有反應(yīng)的細(xì)胞[141-142],其次是促炎性單核細(xì)胞[143](隨后分化成巨噬細(xì)胞) ,以清除死亡的心肌細(xì)胞和其他壞死組織。既往資料已表明內(nèi)皮細(xì)胞衍生的細(xì)胞外囊泡如何將嗜中性粒細(xì)胞和單核細(xì)胞動(dòng)員到梗死心肌[144-145],以及這些細(xì)胞的轉(zhuǎn)錄組在募集到受損心肌之前如何在血液中改變。AMI也將白細(xì)胞動(dòng)員到遠(yuǎn)離缺血區(qū)域的心肌。

在消退階段,促炎癥過(guò)程被抑制。在這個(gè)階段,巨噬細(xì)胞功能從吞噬作用,蛋白水解和細(xì)胞外間質(zhì)降解轉(zhuǎn)變?yōu)檠苌珊腿庋拷M織形成。系統(tǒng)地,MI 增加促炎細(xì)胞因子TNF-α[150] 和 IL-6[151] 的血漿濃度。值得注意的是,實(shí)驗(yàn)性MI通過(guò)增加骨髓細(xì)胞向斑塊的募集來(lái)加速動(dòng)脈粥樣硬化[152]。

潛在治療目標(biāo)

炎癥過(guò)程是潛在的治療靶點(diǎn)。在MI實(shí)驗(yàn)?zāi)P椭校种拼傺仔詥魏思?xì)胞向受損心肌的募集減少了梗死面積 [153-155]。這導(dǎo)致了夸大或延長(zhǎng)的促炎反應(yīng)加劇損傷并使修復(fù)最小化,從而導(dǎo)致不良的心室重塑[149,156]。然而,MI后的非靶向抑制可能是有害的。既往已經(jīng)顯示皮質(zhì)類固醇和非甾體抗炎藥與MI后的心室壁破裂有關(guān)[157,158]。如前所述,巨噬細(xì)胞轉(zhuǎn)變成愈合劑,并且可以理解非靶向抑制損害愈合/修復(fù)。

近年來(lái),針對(duì)性地抑制CAD中的炎癥通路已經(jīng)顯示出有希望的結(jié)果。2017 年的CANTOS試驗(yàn)表明,針對(duì)炎癥途徑的概念或有益,即使用單克隆抗體卡那單抗(canakinumab)的IL-1β可改善hs-CRP≥2 mg/L的已知CAD的預(yù)后,盡管效應(yīng)大小是適度的[159]。

隨后,IL-6,一種更下游的細(xì)胞因子,目前正在作為一個(gè)潛在的治療靶點(diǎn)進(jìn)行研究。在ASSAIL-MI 中,對(duì)199名個(gè)體進(jìn)行的2期隨機(jī)臨床試驗(yàn)中,用托珠單抗(tocilizumab)靶向 IL-6 顯著增加了胸痛6 h內(nèi)進(jìn)行直接PCI的STEMI患者的心肌挽救指數(shù)[160]。RESCUE 2 期隨機(jī)臨床試驗(yàn)顯示,在腎功能受損的人群中,針對(duì) IL-6 的單克隆抗體Ziltivekimab,可在不影響膽固醇水平的情況下,顯著降低CRP 水平[161]。ZEUS 3 期臨床試驗(yàn)近期已完成患者招募。一項(xiàng)更相關(guān)的3期 ARTEMIS試驗(yàn)將在侵入性操作后盡早探究Ziltivekimab的療效,STEMI患者在住院36小時(shí)內(nèi)起始,NSTEMI患者在住院48小時(shí)內(nèi)起始。

IL-1β和IL-6都是活性細(xì)胞因子,與冠心病及其并發(fā)癥的因果途徑有關(guān),因此是潛在的治療靶點(diǎn)。這與CRP相反,后者是一種在肝臟中產(chǎn)生的對(duì) IL-6 有反應(yīng)的急性期蛋白質(zhì),但其僅僅為一種生物標(biāo)注物,對(duì)發(fā)病機(jī)制物影響。重要的是,對(duì)因果途徑的有針對(duì)性的抑制應(yīng)該提供對(duì)驅(qū)動(dòng)動(dòng)脈粥樣硬化進(jìn)展的炎癥過(guò)程的更好的理解,并幫助描述和定義可能受益最大的患者組。

糖尿病和炎癥過(guò)程

DM等代謝性疾病如何影響免疫細(xì)胞功能,人們對(duì)此越來(lái)越感興趣。還有很多東西有待理解,但是現(xiàn)有證據(jù)表明了DM病如何加重MI后的炎癥過(guò)程,以及如何介導(dǎo)不良結(jié)局的潛在可能性。在動(dòng)物模型中,高血糖驅(qū)動(dòng)骨髓生成[162],這似乎由于短暫間歇性高血糖的模式而加劇[163,164]。最近,發(fā)現(xiàn)了高血糖誘導(dǎo)的訓(xùn)練免疫(HITI)的新現(xiàn)象,其中高血糖加劇經(jīng)典炎癥并抑制修復(fù)。高血糖導(dǎo)致造血干細(xì)胞的表觀遺傳學(xué)改變,使其后代遠(yuǎn)離M2修復(fù)表型,轉(zhuǎn)向M1促炎癥表型。

盡管恢復(fù)了葡萄糖的生理水平,但這些修飾仍然存在[165]。雖然這種(M1/M2) 二分法是過(guò)于簡(jiǎn)單化的,但研究結(jié)果表明,HITI 或影響 MI后的炎癥過(guò)程,并導(dǎo)致不能通過(guò)降低葡萄糖來(lái)糾正的變化。DM或影響MI后巨噬細(xì)胞的炎癥過(guò)程。與創(chuàng)面愈合相關(guān),DM和HITI可能會(huì)損害MI。有效的傷口愈合需要炎癥期的促炎性單核細(xì)胞的順序浸潤(rùn),然后是修復(fù)期的抗炎性單核細(xì)胞。然而,在DM小鼠的傷口中,Ly6Chi單核細(xì)胞可表現(xiàn)出 “第二次內(nèi)流” 并浸潤(rùn),從而延遲其向 Ly6CLo單核細(xì)胞的轉(zhuǎn)變[166]。一種類似,但尚未探索的過(guò)程可能在心臟中發(fā)生。如前所述,高血糖導(dǎo)致偏離M2修復(fù)表型。促炎性單核細(xì)胞浸潤(rùn)缺血心肌可損害炎癥的消退,加重?fù)p傷程度。如果這些是病理學(xué)上重要的過(guò)程,人們可能預(yù)期 DM患者的梗死面積會(huì)更大,但是在上述CMR研究中并不明顯(在急性期測(cè)量的梗死面積沒(méi)有顯著差異)[60,61],盡管已知梗死面積僅在大約30天后達(dá)到其最終大小[167]。因此,研究者或過(guò)早測(cè)量梗死面積,尤其是如果HITI可延遲梗死愈合和炎癥消退時(shí)。此外,目前的成像技術(shù)無(wú)法檢測(cè)梗死愈合過(guò)程中潛在的重要組織學(xué)差異。

DM對(duì)造血和白細(xì)胞功能的影響似乎可能影響招募到遠(yuǎn)端心肌的白細(xì)胞的性質(zhì)。在人類心臟中,CCR2 +巨噬細(xì)胞 (來(lái)源于循環(huán)單核細(xì)胞)的存在與心室功能惡化和不良重塑有關(guān)[168]。偏向于促炎癥過(guò)程的單核細(xì)胞可能不僅被招募到梗死區(qū),而且被招募到遠(yuǎn)端心肌,這可以部分解釋為什么DM患者在MI后更可能發(fā)生 HF[169-170]。此外,最近的證據(jù)表明,炎癥細(xì)胞可能是MI后心律失常的決定因素[171]。全身而言,高血糖增加炎性細(xì)胞因子(TNF-α,IL-6 和 IL-18)[172]和急性期蛋白的產(chǎn)生[173]。如前所述,hs-CRP 與心血管事件的殘余風(fēng)險(xiǎn)密切相關(guān),特別是在 DM 患者中[129]。CANTOS試驗(yàn)的亞組分析顯示,對(duì)于T2DM患者進(jìn)行抗炎治療沒(méi)有選擇性益處[175-176]。

綜上所述,DM的存在或不足以確定DM患者或受益于靶向活動(dòng)性炎癥。在細(xì)胞水平上,高血糖驅(qū)動(dòng)糖酵解反過(guò)來(lái)導(dǎo)致特定組蛋白的翻譯后修飾。這些組蛋白修飾顯著的改變了IL-6 啟動(dòng)子處的染色質(zhì)可及性,這是 HITI 的主要特征[165,177]。啟動(dòng)子 “保持開(kāi)放”,從而有效的啟動(dòng)活性轉(zhuǎn)錄的 IL-6 基因。因此,T2D M導(dǎo)致HITI患者具有更高的IL-6 和 hs-CRP水平,且可能對(duì)IL-6抑制顯示出特殊的治療益處。

結(jié)論和未來(lái)影響

T2DM的全球流行正在迅速增加對(duì)心血管疾病的不利影響。盡管MI后預(yù)后總體上有所改善,但T2DM患者的預(yù)后持續(xù)惡化,并發(fā)癥、再梗死和死亡率較高。影響因素是復(fù)雜和多重的,遠(yuǎn)遠(yuǎn)超出了血管造影表現(xiàn)的冠心病和/或MI大小的 “解剖學(xué)” 考慮范圍。特別是,新出現(xiàn)的一系列證據(jù)指出了炎癥過(guò)程和炎癥消退受損在 T2DM中的作用。流行病學(xué)研究表明,在T2DM患者中,hs-CRP是預(yù)測(cè)結(jié)局的優(yōu)越指標(biāo)(與LDL-C相比);以及近期數(shù)據(jù)提示的高血糖對(duì)先天性免疫功能的影響。這些先天免疫功能的改變可能與動(dòng)脈粥樣硬化的進(jìn)展和AMI的反應(yīng)有關(guān),且所有名義上DM患者均會(huì)受到不同程度的影響。

另外,新出現(xiàn)強(qiáng)效證據(jù)表明,在未來(lái),人們將受益于對(duì)疾病過(guò)程的描述,而不僅僅是名義上診斷的DM。特別是,對(duì)炎癥過(guò)程和體內(nèi)平衡紊亂結(jié)局的更好理解和角色塑造可能為針對(duì)并發(fā)癥和改善DM患者的心血管預(yù)后開(kāi)辟新的機(jī)會(huì)。

參考文獻(xiàn)

1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Song X, Ren Y, Shan P-F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020;10:14790.

2. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N,Whincup PH, Mukamal KJ, Gillum RF, Holme I, Nj?lstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J; Emerging risk factors collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011;364:829–841.

3. Bauters C, Lemesle G, de Groote P, Lamblin N. A systematic review and meta-regression of temporal trends in the excess mortality associated with diabetes mellitus after myocardial infarction. Int J Cardiol 2016;217:109–121.

4. Simek S, Motovska Z, Hlinomaz O, Kala P, Hromadka M, Knot J, Varvarovsky I, Dusek J,Rokyta R, Tousek F, Svoboda M, Vodzinska A, Mrozek J, Jarkovsky J; On behalf of the prague-study group. The effect of diabetes on prognosis following myocardial infarction treated with primary angioplasty and potent antiplatelet therapy. J Clin Med 2020;9:2555.

5. Ritsinger V, Nystr?m T, Saleh N, Lagerqvist B, Norhammar A. Heart failure is a common complication after acute myocardial infarction in patients with diabetes: a nationwide study in the SWEDEHEART registry. Eur J Prev Cardiol 2020;27:1890–1901.

6. Echouffo-Tcheugui JB, Kolte D, Khera S, Aronow HD, Abbott JD, Bhatt DL, Fonarow GC. Diabetes mellitus and cardiogenic shock complicating acute myocardial infarction. Am J Med 2018;131:778–86.e1.

7. Faxén J, Jernberg T, Hollenberg J, Gadler F, Herlitz J, Szummer K. Incidence and predictors of out-of-hospital cardiac arrest within 90 days after myocardial infarction. J Am Coll Cardiol 2020;76:2926–2936.

8. Galasso G, De Angelis E, Silverio A, Di Maio M, Cancro FP, Esposito L, Bellino M, Scudiero F, Damato A, Parodi G, Vecchione C. Predictors of recurrent ischemic events in patients with ST-segment elevation myocardial infarction. Am J Cardiol 2021;159:44–51.

9. de Vreede JJM, Gorgels APM, Verstraaten GMP, Vermeer F, Dassen WRM, Wellens HJJ. Did prognosis after acute myocardial infarction change during the past 30 years? A meta-analysis. J Am Coll Cardiol 1991;18:698–706.

10. McNamara RL, Kennedy KF, Cohen DJ, Diercks DB, Moscucci M, Ramee S, Wang TY, Connolly T, Spertus JA. Predicting in-hospital mortality in patients with acute myocardial infarction. J Am Coll Cardiol 2016;68:626–635.

11. Milazzo V, Cosentino N, Genovese S, Campodonico J, Mazza M, De Metrio M, Marenzi G. Diabetes mellitus and acute myocardial infarction: impact on short and long-term mortality. In: Islam MS (ed.), Diabetes: from research to clinical practice: volume 4. Cham: Springer International Publishing; 2021. p153–169.

12. Bradley RF, Bryfogle JW. Survival of diabetic patients after myocardial infarction. Am J Med 1956;20:207–216.

13. Rytter L, Troelsen S, Beck-Nielsen H. Prevalence and mortality of acute myocardial infarction in patients with diabetes. Diabetes Care 1985;8:230–234.

14. Mak KH, Moliterno DJ, Granger CB, Miller DP, White HD, Wilcox RG, Califf RM, Topol EJ. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol 1997;30: 171–179.

15. Franklin K, Goldberg RJ, Spencer F, Klein W, Budaj A, Brieger D, Marre M, Steg PG, Gowda N, Gore JM; GRACE Investigators. Implications of diabetes in patients with acute coronary syndromes: the global registry of acute coronary events. Arch Intern Med 2004;164: 1457–1463.

16. Skoda R, Nemes A, Bárczi G, Vágó H, Ruzsa Z, édes IF, Oláh A, Kosztin A, Dinya E, Merkely B, Becker D. Survival of myocardial infarction patients with diabetes mellitus at the invasiveera (results from the városmajor myocardial infarction registry). J Clin Med 2023;12:917.

17. Gyldenkerne C, Maeng M, Kj?ller-Hansen L, Maehara A, Zhou Z, Ben-Yehuda O, Erik B?tker H, Engstr?m T, Matsumura M, Mintz GS, Fr?bert O, Persson J, Wiseth R, Larsen AI, Jensen LO, Nordrehaug JE, Bleie ?, Omerovic E, Held C, James SK, Ali ZA, Rosen HC, Stone GW, Erlinge D. Coronary artery lesion lipid content and plaque burden in diabetic and nondiabetic patients: PROSPECT II. Circulation 2023;147:469–481.

18. Brener SJ, Mehran R, Dressler O, Cristea E, Stone GW. Diabetes mellitus, myocardial reperfusion, and outcome in patients with acute ST-elevation myocardial infarction treated with primary angioplasty (from HORIZONS AMI). Am J Cardiol 2012;109:1111–1116.

19. Kerola AM, Juonala M, Palom?ki A, Semb AG, Rautava P, Kyt? V. Case fatality of patients with type 1 diabetes after myocardial infarction. Diabetes Care 2022;45:1657–1665.

20. Ravid M, Berkowicz M, Sohar E. Hyperglycemia during acute myocardial infarction: a sixyear follow-up study. JAMA 1975;233:807–809.

21. Wahab NN, Cowden EA, Pearce NJ, Gardner MJ, Merry H, Cox JL; ICONS Investigators. Is blood glucose an independent predictor of mortality in acute myocardial infarction in the thrombolytic era? J Am Coll Cardiol 2002;40:1748–1754.

22. Singh K, Hibbert B, Singh B, Carson K, Premaratne M, Le May M, Chong A-Y, Arstall M, So Derek. Meta-analysis of admission hyperglycaemia in acute myocardial infarction patients treated with primary angioplasty: a cause or a marker of mortality? Eur Heart J Cardiovasc Pharmacother 2015;1:220–228.

23. Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T, Raskin P. Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2008;117:1610–1619.

24. Esdaile H, Hill N, Mayet J, Oliver N. Glycaemic control in people with diabetes following acute myocardial infarction. Diabetes Res Clin Pract 2023;199:110644.

25. Baviera M, Genovese S, Colacioppo P, Cosentino N, Foresta A, Tettamanti M, Fortino I, Roncaglioni MC, Marenzi G. Diabetes mellitus duration and mortality in patients hospitalized with acute myocardial infarction. Cardiovasc Diabetol 2022;21:223.

26. Pan W, Lu H, Lian B, Liao P, Guo L, Zhang M. Prognostic value of HbA1c for in-hospital and short-term mortality in patients with acute coronary syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol 2019;18:169.

27. Rossello X, Ferreira JP, McMurray JJ, Aguilar D, Pfeffer MA, Pitt B, Dickstein K, Girerd N, Rossignol P, Zannad F; High-risk myocardial infarction database initiative. Editor’s choice-impact of insulin-treated diabetes on cardiovascular outcomes following high-risk myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019;8:231–241.

28. Ritsinger V, Lagerqvist B, Lundman P, Hagstr?m E, Norhammar A. Diabetes, metformin and glucose lowering therapies after myocardial infarction: insights from the SWEDEHEART registry. Diab Vasc Dis Res 2020;17:1479164120973676.

29. Hesen NA, Riksen NP, Aalders B, Brouwer MAE, Ritskes-Hoitinga M, El Messaoudi S, Wever KE. A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction. PLoS One 2017;12:e0183664.

30. Lexis CPH, Wieringa WG, Hiemstra B, van Deursen VM, Lipsic E, van der Harst P, van Veldhuisen DJ, van der Horst ICC. Chronic metformin treatment is associated with reduced myocardial infarct size in diabetic patients with ST-segment elevation myocardial infarction. Cardiovasc Drugs Ther 2014;28:163–171.

31. Basnet S, Kozikowski A, Makaryus AN, Pekmezaris R, Zeltser R, Akerman M, Lesser M, Wolf-Klein G. Metformin and myocardial injury in patients with diabetes and ST-segment elevation myocardial infarction: a propensity score matched analysis. J Am Heart Assoc 2015;4:e002314.

32. Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR Jr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999;33:119–124.

33. Halkin A, Roth A, Jonas M, Behar S. Sulfonylureas are not associated with increased mortality in diabetics treated with thrombolysis for acute myocardial infarction. J Thromb Thrombolysis 2001;12:177–184.

34. Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J 2000;21:220–229.

35. Zeller M, Danchin N, Simon D, Vahanian A, Lorgis L, Cottin Y, Berland J, Gueret P, Wyart P, Deturck R, Tabone X, Machecourt J, Leclercq F, Drouet E, Mulak G, Bataille V, Cambou J-P, Ferrieres J, Simon T; French registry of acute st-elevation and non-st-elevation myocardial infarction investigators. Impact of type of preadmission sulfonylureas on mortality and car

diovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab 2010;95:4993–5002.

36. Danchin N, Charpentier G, Ledru F, Vaur L, Guéret P, Hanania G, Blanchard D, Lablanche J-M, Genès N, Cambou J-P. Role of previous treatment with sulfonylureas in diabetic patients with acute myocardial infarction: results from a nationwide French registry. Diabetes Metab Res Rev 2005;21:143–149.

37. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–2128.

38. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–657.

39. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu P-L, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295–2306.

40. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker A, Kuder JF, Murphy SA, Bhatt DL, Leiter LA., McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde A-M, Sabatine MS;

DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347–357.

41. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, Charbonnel B, Frederich R, Gallo S, Cosentino F, Shih WJ, Gantz I, Terra SG, Cherney DZI, McGuire DK; VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020;383:1425–1435.

42. McMurray JJV, Solomon SD, Inzucchi SE, K?ber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, B?hm M, Chiang C-E, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sj?strand M, Langkilde A-M; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381:1995–2008.

43. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, Shah SJ, Desai AS, Jhund PS, Belohlavek J, Chiang C-E, Borleffs CJW, Comin-Colet J, Dobreanu D, Drozdz J, Fang JC, Alcocer-Gamba MA, Al Habeeb W, Han Y, Honorio JWC, Janssens SP, Katova T, Kitakaze M, Merkely B, O’Meara E, Saraiva JFK, Tereshchenko SN, Thierer J, Vaduganathan M, Vardeny O, Verma S, Pham VN, Wilder?ng U, Zaozerska N, Bachus E, Lindholm D, Petersson M, Langkilde AM; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022;387:1089–1098.

44. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020;17:761–772.

45. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose cotransporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci 2020;5:632–644.

46. Sardu C, Trotta MC, Sasso FC, Sacra C, Carpinella G, Mauro C, Minicucci F, Calabrò P, D’Amico M, D’ Ascenzo F, De Filippo O, Iannaccone M, Pizzi C, Paolisso G, Marfella R. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol 2023;22:80.

47. Udell JA, Jones WS, Petrie MC, Harrington J, Anker SD, Bhatt DL, Hernandez AF, Butler J. Sodium glucose cotransporter-2 inhibition for acute myocardial infarction. J Am Coll Cardiol 2022;79:2058–2068.

48. Marfella R, Sardu C, D’Onofrio N, Fumagalli C, Scisciola L, Sasso FC, Siniscalchi M, Marfella LV, D’Andrea D, Minicucci F, Signoriello G, Cesaro A, Trotta MC, Frigé C, Prattichizzo F, Balestrieri ML, Ceriello A, Calabrò P, Mauro C, Del Viscovo L, Paolisso G. SGLT-2 inhibitors and in-stent restenosis-related events after acute myocardial infarction: an observational study in patients with type 2 diabetes. BMC Med 2023;21:71.

49. Cesaro A, Gragnano F, Paolisso P, Bergamaschi L, Gallinoro E, Sardu C, Mileva N, Foà A, Armillotta M, Sansonetti A, Amicone S, Impellizzeri A, Esposito G, Morici N, Oreglia JA, Casella G, Mauro C, Vassilev D, Galie N, Santulli G, Pizzi C, Barbato E, Calabrò P, Marfella R. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: insights from the SGLT2-I AMI PROTECT study. Front Cardiovasc Med 2022;9:1012220.

50. von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, Alber H, Berger R, Lichtenauer M, Saely CH, Moertl D, Auersperg P, Reiter C, Rieder T, Siller-Matula JM, Gager GM, Hasun M, Weidinger F, Pieber TR, Zechner PM, Herrmann M, Zirlik A, Holman RR, Oulhaj A, Sourij H. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J. 2022;43:4421–4432.

51. Benedikt M, Mangge H, Aziz F, Curcic P, Pailer S, Herrmann M, Kolesnik E, Tripolt NJ, Pferschy PN, Wallner M, Zirlik A, Sourij H, von Lewinski D. Impact of the SGLT2-inhibitor empagliflozin on inflammatory biomarkers after acute myocardial infarction—a post-hoc analysis of the EMMY trial. Cardiovasc Diabetol 2023;22:166.

52. James S, Erlinge D, Storey RF, McGuire DK, Belder M, Eriksson N, Andersen K, Austin D, Arefalk G, Carrick D, Hofmann R, Hoole SP, Jones DA, Lee K, Tygesen H, Johansson PA, Langkilde AM, Ridderstr?le W, Parvaresh Rizi E, Deanfield J, Oldgren J. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid 2024;3:EVIDoa2300286.

53. Butler J, Jones WS, Udell JA, Anker SD, Petrie MC, Harrington J, Mattheus M, Zwiener I, Amir O, Bahit MC, Bauersachs J, Bayes-Genis A, Chen Y, Chopra VK, Figtree G, Ge J, Goodman SG, Gotcheva N, Goto S, Gasior T, Jamal W, Januzzi JL, Jeong MH, Lopatin Y, Lopes RD, Merkely B, Parikh PB, Parkhomenko A, Ponikowski P, Rossello X, Schou M, Simic D, Steg PG, zachniewicz J, van der Meer P, Vinereanu D, Zieroth S, Brueckmann M, Sumin M, Bhatt DL, Hernandez AF. Empagliflozin after acute myocardial infarction. N Engl J Med 2024;390:1455–1466.

54. Lauer MS, Blackstone EH, Young JB, Topol EJ. Cause of death in clinical research: time for a reassessment? J Am Coll Cardiol 1999;34:618–620.

55. Mather AN, Crean A, Abidin N, Worthy G, Ball SG, Plein S, Greenwood JP. Relationship of dysglycemia to acute myocardial infarct size and cardiovascular outcome as determined by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010;12:61.

56. Alegria JR, Miller TD, Gibbons RJ, Yi Q-L, Yusuf S; Collaborative organization of rheothrxevaluation (core) trial investigators. Infarct size, ejection fraction, and mortality in diabetic patients with acute myocardial infarction treated with thrombolytic therapy. Am Heart J 2007;154:743–750.

57. Berman N, Jones MM, De Coster DA. ’Just like a normal pain’, what do people with diabetes mellitus experience when having a myocardial infarction: a qualitative study recruited from UK hospitals. BMJ Open 2017;7:e015736.

58. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, Maehara A, Eitel I, Granger CB, Jenkins PL, Nichols M, Ben-Yehuda O. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J

Am Coll Cardiol 2016;67:1674–1683.

59. Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent advances in cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging 2017;10:e003951.

60. Eitel I, Hintze S, Waha S, Fuernau G, Lurz P, Desch S, Schuler G, Thiele H. Prognostic impact of hyperglycemia in nondiabetic and diabetic patients with ST-elevation myocardial infarction: insights from contrast-enhanced magnetic resonance imaging. Circ Cardiovasc Imaging 2012;5:708–718.

61. Reinstadler SJ, Stiermaier T, Eitel C, Metzler B, de Waha S, Fuernau G, Desch S, Thiele H, Eitel I. Relationship between diabetes and ischaemic injury among patients with revascularized ST-elevation myocardial infarction. Diabetes Obes Metab 2017;19:1706–1713.

62. Sutton NR, Li S, Thomas L, Wang TY, de Lemos JA, Enriquez JR, Shah RU, Fonarow GC. The association of left ventricular ejection fraction with clinical outcomes after myocardial infarction: findings from the Acute Coronary Treatment and Intervention Outcomes Network (ACTION) Registry–Get with the Guidelines (GWTG) Medicare-linked database. Am Heart J 2016;178:65–73.

63. Goraya TY, Leibson CL, Palumbo PJ, Weston SA, Killian JM, Pfeifer EA, Jacobsen SJ, Frye RL, Roger VL. Coronary atherosclerosis in diabetes mellitus: a population-based autopsy study. J Am Coll Cardiol 2002;40:946–953.

64. Niccoli G, Giubilato S, Di Vito L, Leo A, Cosentino N, Pitocco D, Marco V, Ghirlanda G, Prati F, Crea F. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J 2013;34:729–741.

65. Marso SP, Mercado N, Maehara A, Weisz G, Mintz GS, McPherson J, Schiele F, Dudek D, Fahy M, Xu K, Lansky A, Templin B, Zhang Z, de Bruyne B, Serruys PW, Stone GW. Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes. JACC Cardiovasc Imaging 2012;5(Suppl.):S42–S52.

66. Ibebuogu UN, Nasir K, Gopal A, Ahmadi N, Mao SS, Young E, Honoris L, Nuguri VK, Lee RS, Usman N, Rostami B, Pal R, Flores F, Budoff MJ. Comparison of atherosclerotic plaque burden and composition between diabetic and non diabetic patients by non invasive CT angiography. Int J Cardiovasc Imaging 2009;25:717–723.

67. Morgan KP, Kapur A, Beatt KJ. Anatomy of coronary disease in diabetic patients: an explanation for poorer outcomes after percutaneous coronary intervention and potential target for intervention. Heart 2004;90:732–738.

68. Erlinge D, Maehara A, Ben-Yehuda O, B?tker HE, Maeng M, Kj?ller-Hansen L, Engstr?m T, Matsumura M, Crowley A, Dressler O, Mintz GS, Fr?bert O, Persson J, Wiseth R, Larsen AI, Okkels JL, Nordrehaug JE, Bleie ?, Omerovic E, Held C, James SK, Ali ZA, Muller JE, Stone GW; PROSPECT II Investigators. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet 2021;397:985–995.

69. Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Fracassi F, Lee H, Jang I-K. Coronary plaque characteristics in patients with diabetes mellitus who presented with acute coronary syndromes. J Am Heart Assoc 2018;7:e009245.

70. Ali ZA, Karimi Galougahi K, Mintz GS, Maehara A, Shlofmitz RA, Mattesini A. Intracoronary optical coherence tomography: state of the art and future directions. EuroIntervention 2021; 17:e105–e123.

71. Woodfield SL, Lundergan CF, Reiner JS, Greenhouse SW, Thompson MA, Rohrbeck SC, Deychak Y, Simoons ML, Califf RM, Topol EJ, Ross AM. Angiographic findings and outcome in diabetic patients treated with thrombolytic therapy for acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol 1996;28:1661–1669.

72. Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, Duncker DJ, Eringa EC, Koller A, Tousoulis D, Trifunovic D, Vavlukis M, de Wit C, Badimon L. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc Res 2020;116:741–755.

73. Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, Rajkumar CA, Shun-Shin MJ, Ahmad Y, Sen S, Al-Lamee R, Petraco R; Coronary Flow Outcomes Reviewing Committee. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J 2022;43:1582–1593.

74. Aljizeeri A, Ahmed AI, Suliman I, Alfaris MA, Elneama A, Al-Mallah MH. Incremental prognostic value of positron emission tomography-derived myocardial flow reserve in patients with and without diabetes mellitus. Eur Heart J Cardiovasc Imaging 2023;24:563–571.

75. Kato S, Fukui K, Kodama S, Azuma M, Iwasawa T, Kimura K, Tamura K, Utsunomiya D. Incremental prognostic value of coronary flow reserve determined by phase-contrast cine cardiovascular magnetic resonance of the coronary sinus in patients with diabetes mellitus. J Cardiovasc Magn Reson 2020;22:73.

76. Gallinoro E, Paolisso P, Candreva A, Bermpeis K, Fabbricatore D, Esposito G, Bertolone D, Fernandez Peregrina E, Munhoz D, Mileva N, Penicka M, Bartunek J, Vanderheyden M, Wyffels E, Sonck J, Collet C, De Bruyne B, Barbato E. Microvascular dysfunction in patients with type II diabetes mellitus: invasive assessment of absolute coronary blood flow and

microvascular resistance reserve. Front Cardiovasc Med 2021;8:765071.

77. Hu X, Zhang J, Lee JM, Chen Z, Hwang D, Park J, Shin E-S, Nam C-W, Doh J-H, Chen S, Yang J, Tanaka N, Kuramitsu S, Matsuo H, Takashima H, Akasaka T, Koo B-K, Wang J. Prognostic impact of diabetes mellitus and index of microcirculatory resistance in patients undergoing fractional flow reserve-guided revascularization. Int J Cardiol 2020;307: 171–175.

78. Sara JD, Taher R, Kolluri N, Vella A, Lerman LO, Lerman A. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery disease. Cardiovasc Diabetol 2019;18:22.

79. Zhang W, Singh S, Liu L, Mohammed AQ, Yin G, Xu S, Lv X, Shi T, Feng C, Jiang R, Mohammed AA, Mareai RM, Xu Y, Yu X, Abdu FA, Che W. Prognostic value of coronary microvascular dysfunction assessed by coronary angiography-derived index of microcirculatory resistance in diabetic patients with chronic coronary syndrome. Cardiovasc Diabetol 2022;21:222.

80. Cortigiani L, Rigo F, Gherardi S, Galderisi M, Bovenzi F, Sicari R. Prognostic meaning of coronary microvascular disease in type 2 diabetes mellitus: a transthoracic Doppler echocardiographic study. J Am Soc Echocardiogr 2014;27:742–748.

81. de Waha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur

Heart J 2017;38:3502–3510.

82. Fabris E, van ‘t Hof A, Hamm CW, Lapostolle F, Lassen JF, Goodman SG, ten Berg JM,Bolognese L, Cequier A, Chettibi M, Hammett CJ, Huber K, Janzon M, Merkely B, Storey RF, Zeymer U, Cantor WJ, Tsatsaris A, Kerneis M, Diallo A, Vicaut E, Montalescot G. Clinical impact and predictors of complete ST segment resolution after primary percutaneous coronary intervention: a subanalysis of the ATLANTIC trial. Eur Heart J Acute Cardiovasc Care 2019;8:208–217.

83. Timmer JR, van der Horst ICC, de Luca G, Ottervanger JP, Hoorntje JCA, de Boer M-J, Suryapranata H, Dambrink J-HE, Gosselink M, Zijlstra F, van ’t Hof AWJ; Myocardial Infarction Study Group. Comparison of myocardial perfusion after successful primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction with

versus without diabetes mellitus. Am J Cardiol 2005;95:1375–1377.

84. Timmer JR, Hoekstra M, Nijsten MWN, Horst I, Ottervanger JP, Slingerland RJ, Dambrink J-HE, Bilo HJG, Zijlstra F, van ’t Hof AWJ. Prognostic value of admission glycosylated hemoglobin and glucose in nondiabetic patients with ST-segment–elevation myocardial infarction treated with percutaneous coronary intervention. Circulation 2011;124:704–711.

85. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59:8–13.

86. van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care 2010;33:2084–2089.

87. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy. Circ Res 2018;122:624–638.

88. Desta L, Jernberg T, L?fman I, Hofman-Bang C, Hagerman I, Spaak J, Persson H. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction. The SWEDEHEART registry (Swedish web-system for enhancement and development of evidence-based care in heart disease evaluated according to recommended

therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail 2015;3:234–242.

89. Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 2020;126: 1501–1525.

90. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, Siu S, Brown KA. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 2008;118:1011–1020.

91. Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 2016;90:84–93.

92. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function. Circulation 2000;101:2271–2276.

93. Pararajasingam G, L?gstrup BB, H?fsten DE, Christophersen TB, Auscher S, Hangaard J, Egstrup K. Dysglycemia and increased left ventricle mass in normotensive patients admitted with a first myocardial infarction: prognostic implications of dysglycemia during 14 years of follow-up. BMC Cardiovasc Disord 2019;19:103.

94. Sawano M, Lu Y, Caraballo C, Mahajan S, Dreyer R, Lichtman JH, D’Onofrio G, Spatz E, Khera R, Onuma O, Murugiah K, Spertus JA, Krumholz HM. Sex difference in outcomes of acute myocardial infarction in young patients. J Am Coll Cardiol 2023;81:1797–1806.

95. Weaver WD, White HD, Wilcox RG, Aylward PE, Morris D, Guerci A, Ohman EM, Barbash GI, Betriu A, Sadowski ZZ, Topol EJ, Califf RM. Comparisons of characteristics and outcomes among women and men with acute myocardial infarction treated with thrombolytic therapy. GUSTO-I investigators. JAMA 1996;275:777–782.

96. Kuehnemund L, Koeppe J, Feld J, Wiederhold A, Illner J, Makowski L, Ger? J, Reinecke H, Freisinger E. Gender differences in acute myocardial infarction—a nationwide German real-life analysis from 2014 to 2017. Clin Cardiol 2021;44:890–898.

97. Milcent C, Dormont B, Durand-Zaleski I, Steg PG. Gender differences in hospital mortality and use of percutaneous coronary intervention in acute myocardial infarction. Circulation 2007;115:833–839.

98. Jneid H, Fonarow GC, Cannon CP, Hernandez AF, Palacios IF, Maree AO, Wells Q, Bozkurt B, LaBresh KA, Liang L, Hong Y, Newby LK, Fletcher G, Peterson E, Wexler L; Get With the Guidelines Steering Committee and Investigators. Sex differences in medical care and early death after acute myocardial infarction. Circulation 2008;118:2803–2810.

99. Radovanovic D, Erne P, Urban P, Bertel O, Rickli H, Gaspoz J-M; AMIS Plus Investigators. Gender differences in management and outcomes in patients with acute coronary syndromes: results on 20 290 patients from the AMIS Plus Registry. Heart 2007;93: 1369–1375.

100. Elgendy IY, Wegermann ZK, Li S, Mahtta D, Grau-Sepulveda M, Smilowitz NR, Gulati M, Garratt KN, Wang TY, Jneid H. Sex differences in management and outcomes of acute myocardial infarction patients presenting with cardiogenic shock. JACC Cardiovasc Interv 2022;15:642–652.

101. Plakht Y, Elkis Hirsch Y, Shiyovich A, Abu Tailakh M, Liberty IF, Gilutz H. Heterogenicity of diabetes as a risk factor for all-cause mortality after acute myocardial infarction: age and sex impact. Diabetes Res Clin Pract 2021;182:109117.

102. Bucholz EM, Butala NM, Rathore SS, Dreyer RP, Lansky AJ, Krumholz HM. Sex differences in long-term mortality after myocardial infarction: a systematic review. Circulation 2014; 130:757–767.

103. Valero-Masa MJ, Velásquez-Rodríguez J, Diez-Delhoyo F, Devesa C, Juárez M, Sousa-Casasnovas I, Angulo-Llanos R, Fernández-Avilés F, Martínez-Sellés M. Sex differences in acute myocardial infarction: is it only the age? Int J Cardiol 2017;231:36–41.

104. Farhan S, Baber U, Vogel B, Aquino M, Chandrasekhar J, Faggioni M, Giustino G, Kautzky-Willer A, Sweeny J, Shah S, Vijay P, Barman N, Moreno P, Kovacic J, Dangas G, Kini A, Mehran R, Sharma S. Impact of diabetes mellitus on ischemic events in men and women after percutaneous coronary intervention. Am J Cardiol 2017;119:1166–1172.

105. Norhammar A, Stenestrand U, Lindb?ck J, Wallentin L; Register of Information and Knowledge about Swedish Heart Intensive Care Admission (RIKS-HIA). Women younger than 65 years with diabetes mellitus are a high-risk group after myocardial infarction: areport from the Swedish Register of Information and Knowledge about Swedish Heart

Intensive Care Admission (RIKS-HIA). Heart 2008;94:1565–1570.

106. Chakraborty S, Amgai B, Bandyopadhyay D, Patel N, Hajra A, Narasimhan B, Rai D, Aggarwal G, Ghosh RK, Yandrapalli S, Aronow WS, Fonarow GC, Naidu SS. Acute myocardial infarction in the young with diabetes mellitus- national inpatient sample study with sex-based difference in outcomes. Int J Cardiol 2021;326:35–41.

107. Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 2009;81:457–464.

108. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol 2010;40: 616–619.

109. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 1998;275:C1640–C1652.

110. Morgan MJ, Liu Z-G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011;21:103–115.

111. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002;105:1656–1662.

112. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 2009;54:1891–1898.

113. Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res 2021;117:1257–1273.

114. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 2005;46:2116–2124.

115. Catrina S-B, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function. Diabetes 2004;53:3226–3232.

116. Marfella R, Esposito K, Nappo F, Siniscalchi M, Sasso FC, Portoghese M, Pia Di Marino M, Baldi A, Cuzzocrea S, Di Filippo C, Barboso G, Baldi F, Rossi F, D’Amico M, Giugliano D. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes 2004;53:2383–2391.

117. Januszewski AS, Watson CJ, O’Neill V, McDonald K, Ledwidge M, Robson T, Jenkins AJ, Keech AC, McClements L. FKBPL is associated with metabolic parameters and is a novel determinant of cardiovascular disease. Sci Rep 2020;10:21655.

118. Ling L, Shen Y, Wang K, Jiang C, Fang C, Ferro A, Kang L, Xu B. Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: relevance to impaired endothelial progenitor cells mobilization. PLoS One 2012;7:e50739.

119. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023;14:410.

120. Fadini GP, Albiero M, Bonora BM, Avogaro A. Angiogenic abnormalities in diabetes mellitus: mechanistic and clinical aspects. J Clin Endocrinol Metab 2019;104:5431–5444.

121. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012;2012:918267.

122. An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006;291:H1489–H1506.

123. Ferreirós ER, Boissonnet CP, Pizarro R, Merletti PFG, Corrado G, Cagide A, Bazzino OO. Independent prognostic value of elevated C-reactive protein in unstable angina. Circulation 1999;100:1958–1963.

124. Buffon A, Liuzzo G, Biasucci LM, Pasqualetti P, Ramazzotti V, Rebuzzi AG, Crea F, Maseri A. Preprocedural serum levels of C-reactive protein predict early complications and late restenosis after coronary angioplasty. J Am Coll Cardiol 1999;34:1512–1521.

125. Sakakura K, Kubo N, Ako J, Wada H, Fujiwara N, Funayama H, Ikeda N, Nakamura T, Sugawara Y, Yasu T, Kawakami M, Momomura S. Peak C-reactive protein level predicts long-term outcomes in type B acute aortic dissection. Hypertension 2010;55:422–429.

126. Chalmers JD, Singanayagam A, Hill AT. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008;121:219–225.

127. Ridker PM, Rifai N, Pfeffer MA, Sacks FM, Moye LA, Goldman S, Flaker GC, Braunwald E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation 1998;98:839–844.

128. Choudhury RP, Leyva F. C-reactive protein, serum amyloid A protein, and coronary events. Circulation 1999;100:e65–e66.

129. Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 2023;401:1293–1301.

130. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017;14:133–144.

131. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016;16: 626–638.

132. Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 2018;175:1377–1400.

133. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008;117:3216–3226.

134. Zou N, Ao L, Cleveland JC Jr, Yang X, Su X, Cai G-Y, Banerjee A, Fullerton DA, Meng X. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global schemia-reperfusion. Am J Physiol Heart Circ Physiol 2008;294:H2805–H2813.

135. Volz HC, Laohachewin D, Seidel C, Lasitschka F, Keilbach K, Wienbrandt AR, Andrassy J, Bierhaus A, Kaya Z, Katus HA, Andrassy M. S100a8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Res Cardiol 2012;107: 250.

136. Schoneveld A, Hoefer I, Sluijter J, ...

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關(guān)推薦
熱點(diǎn)推薦
韓紅母親育有兩個(gè)女兒,晚年在京治病,戰(zhàn)友曝韓紅和繼父真實(shí)關(guān)系

韓紅母親育有兩個(gè)女兒,晚年在京治病,戰(zhàn)友曝韓紅和繼父真實(shí)關(guān)系

古希臘掌管月桂的神
2025-04-15 19:55:43
韓佳奇受傷后回看比賽特別愧疚:這次又讓侯哥替我背鍋了

韓佳奇受傷后回看比賽特別愧疚:這次又讓侯哥替我背鍋了

雷速體育
2025-04-16 13:15:32
大街上有人向我借火,我順手給了他點(diǎn)了,沒(méi)想到居然救了自己一命

大街上有人向我借火,我順手給了他點(diǎn)了,沒(méi)想到居然救了自己一命

蕭竹輕語(yǔ)
2025-04-10 18:47:27
特斯拉成爛大街國(guó)民車,2025年3月Model Y賣4.8萬(wàn)輛,國(guó)產(chǎn)車咋玩

特斯拉成爛大街國(guó)民車,2025年3月Model Y賣4.8萬(wàn)輛,國(guó)產(chǎn)車咋玩

小鵬財(cái)經(jīng)
2025-04-14 11:28:49
澤連斯基要倒霉了,他最后的下場(chǎng),將會(huì)跟卡扎菲和薩達(dá)姆一樣

澤連斯基要倒霉了,他最后的下場(chǎng),將會(huì)跟卡扎菲和薩達(dá)姆一樣

利刃號(hào)
2025-04-02 10:40:23
辟謠:不要被自媒體帶歪了,美國(guó)245%的關(guān)稅只是針對(duì)注射器和針頭,占對(duì)美產(chǎn)品總額的萬(wàn)分之三。

辟謠:不要被自媒體帶歪了,美國(guó)245%的關(guān)稅只是針對(duì)注射器和針頭,占對(duì)美產(chǎn)品總額的萬(wàn)分之三。

邏輯與常識(shí)
2025-04-16 15:17:08
吳宗憲回應(yīng)了,希望某人別著急,吳姍儒只是代班,代班而已!

吳宗憲回應(yīng)了,希望某人別著急,吳姍儒只是代班,代班而已!

小咪侃娛圈
2025-04-16 11:34:42
突發(fā)!特朗普最新簽令!英偉達(dá)盤后大跌,市值蒸發(fā)1.2萬(wàn)億元!美股遭大規(guī)模拋售,華爾街大佬集體警告,基金經(jīng)理們“相當(dāng)悲觀”

突發(fā)!特朗普最新簽令!英偉達(dá)盤后大跌,市值蒸發(fā)1.2萬(wàn)億元!美股遭大規(guī)模拋售,華爾街大佬集體警告,基金經(jīng)理們“相當(dāng)悲觀”

每日經(jīng)濟(jì)新聞
2025-04-16 09:12:04
哈登也得叫大哥!巴特勒5場(chǎng)出手62次罰球62個(gè),這才是一碰就犯規(guī)

哈登也得叫大哥!巴特勒5場(chǎng)出手62次罰球62個(gè),這才是一碰就犯規(guī)

嘴炮體壇
2025-04-16 13:36:04
阿根廷總統(tǒng)認(rèn)為世界新秩序的領(lǐng)導(dǎo)者將是俄羅斯、美國(guó)和中國(guó)

阿根廷總統(tǒng)認(rèn)為世界新秩序的領(lǐng)導(dǎo)者將是俄羅斯、美國(guó)和中國(guó)

俄羅斯衛(wèi)星通訊社
2025-04-16 15:10:32
十年行內(nèi)專家建議:住宅寧愿空著,也不要輕易出租!都是為啥?

十年行內(nèi)專家建議:住宅寧愿空著,也不要輕易出租!都是為啥?

巢客HOME
2025-04-11 10:15:08
舊社會(huì)的家妓有多慘?被當(dāng)做“肉屏風(fēng)”,吞痰液,連娼妓都不如

舊社會(huì)的家妓有多慘?被當(dāng)做“肉屏風(fēng)”,吞痰液,連娼妓都不如

午夜故事會(huì)
2025-04-11 14:51:35
歐冠:皇馬vs阿森納,這個(gè)位置不解決,皇馬很難晉級(jí)!

歐冠:皇馬vs阿森納,這個(gè)位置不解決,皇馬很難晉級(jí)!

大牛足球觀
2025-04-16 18:28:22
你是認(rèn)真的嗎?獨(dú)行俠高管:東契奇的交易價(jià)值,等同于埃利斯

你是認(rèn)真的嗎?獨(dú)行俠高管:東契奇的交易價(jià)值,等同于埃利斯

雞丁侃球
2025-04-16 07:57:26
巴普蒂斯塔:梅西總有頂級(jí)隊(duì)友,C羅是GOAT因他做的事更難

巴普蒂斯塔:梅西總有頂級(jí)隊(duì)友,C羅是GOAT因他做的事更難

雷速體育
2025-04-16 14:59:11
夫妻生活在婚姻中很重要嗎?網(wǎng)友:當(dāng)晚質(zhì)量決定第二天的待遇!

夫妻生活在婚姻中很重要嗎?網(wǎng)友:當(dāng)晚質(zhì)量決定第二天的待遇!

美好客棧大掌柜
2025-02-23 00:10:05
51歲的陳德容被偶遇,真實(shí)顏值長(zhǎng)這樣,網(wǎng)友:果然不是路人能比!

51歲的陳德容被偶遇,真實(shí)顏值長(zhǎng)這樣,網(wǎng)友:果然不是路人能比!

喜歡歷史的阿繁
2025-04-15 14:13:20
庫(kù)爾斯克烏軍僅剩兩三個(gè)據(jù)點(diǎn),為何俄軍重兵圍攻月余還沒(méi)奪下來(lái)?

庫(kù)爾斯克烏軍僅剩兩三個(gè)據(jù)點(diǎn),為何俄軍重兵圍攻月余還沒(méi)奪下來(lái)?

凱撒談兵
2025-04-16 10:21:05
鬧大了!景德鎮(zhèn)滅門慘案后續(xù)來(lái)了,肇事者父親威脅白發(fā)人,你敢信

鬧大了!景德鎮(zhèn)滅門慘案后續(xù)來(lái)了,肇事者父親威脅白發(fā)人,你敢信

六目先生
2025-04-16 09:14:32
“糖尿病真兇”揭曉,是甜食的十倍,醫(yī)生:再不忌口,血糖飆升

“糖尿病真兇”揭曉,是甜食的十倍,醫(yī)生:再不忌口,血糖飆升

白宸侃片
2025-04-16 10:06:24
2025-04-16 20:16:50
醫(yī)脈通
醫(yī)脈通
您的臨床決策好幫手
13525文章數(shù) 90300關(guān)注度
往期回顧 全部

健康要聞

在中國(guó),到底哪些人在吃“偉哥”?

頭條要聞

拜登批特朗普"不到百天破壞力驚人" 多名前政要也發(fā)聲

頭條要聞

拜登批特朗普"不到百天破壞力驚人" 多名前政要也發(fā)聲

體育要聞

諾坎普奇跡的兩位當(dāng)事人,差點(diǎn)靈魂互換

娛樂(lè)要聞

娛樂(lè)圈的“現(xiàn)實(shí)”在岳云鵬身上應(yīng)驗(yàn)了

財(cái)經(jīng)要聞

增長(zhǎng)5.4% 一季度GDP增速為何超預(yù)期?

科技要聞

華為問(wèn)界M8售價(jià)公布:36.98萬(wàn)元起

汽車要聞

又帥又快超實(shí)用 極氪007GT獵裝車才是完美的車?

態(tài)度原創(chuàng)

數(shù)碼
手機(jī)
房產(chǎn)
藝術(shù)
公開(kāi)課

數(shù)碼要聞

首發(fā)價(jià) 999 元,雷神 27 英寸 QHD 240Hz 顯示器 ZQ27F240L 發(fā)布

手機(jī)要聞

榮耀Power線下上手體驗(yàn):不吐不快,說(shuō)說(shuō)真實(shí)感受

房產(chǎn)要聞

中海|南海·叁號(hào)院,以海岸美學(xué)重塑海口灣生活向往

藝術(shù)要聞

故宮珍藏的墨跡《十七帖》,比拓本更精良,這才是地道的魏晉寫法

公開(kāi)課

李玫瑾:為什么性格比能力更重要?

無(wú)障礙瀏覽 進(jìn)入關(guān)懷版 主站蜘蛛池模板: 洛浦县| 荃湾区| 哈尔滨市| 高陵县| 苏尼特左旗| 洱源县| 南充市| 甘孜| 正阳县| 江门市| 蓬莱市| 会昌县| 青岛市| 濉溪县| 叙永县| 韶关市| 龙岩市| 和田市| 新密市| 五常市| 普安县| 佛山市| 巨鹿县| 康乐县| 益阳市| 建平县| 旬阳县| 云梦县| 苍南县| 洛川县| 宜城市| 南开区| 长顺县| 台东县| 秭归县| 顺义区| 太康县| 丰台区| 始兴县| 鄯善县| 昆明市|