龔鵬程å°(duì)話海外å¸(xué)者第七å乿œŸï¼šåœ¨åŽç¾(xià n)代情境ä¸ï¼Œè¢«æŠ€è¡“(shù)çµ±(tÇ’ng)治的人類社會(huì)ï¼Œåªæœ‰å¼·(qiáng)化交談ã€é‡å»ºæºé€šå€«ç†ï¼Œæ‰èƒ½ç²å¾—文化新生的力é‡ã€‚這䏿˜¯èª°(shuÃ)çš„ç†è«–,而是æ¯å€‹(gè)人都應(yÄ«ng)實(shÃ)è¸çš„æ´»å‹•(dòng)。龔鵬程先生éŠèµ°ä¸–界,并曾主æŒéŽ(guò)“世界漢å¸(xué)ç ”ç©¶ä¸å¿ƒâ€ã€‚我們會(huì)陸續(xù)推出“龔鵬程å°(duì)話海外å¸(xué)者â€ç³»åˆ—æ–‡ç« ï¼Œè«‹(qÇng)ä»–å°(duì)話一些å¸(xué)界有æ„義的éˆé‚。范åœä¸å±€é™äºŽæ¼¢å¸(xué),會(huì)涉åŠå¤šç¨®å¸(xué)科。以期深山長(zhÇŽng)谷之水,四é¢è€Œå‡ºã€‚
馬克·Z·雅克布森教授(Professor MarkZ. Jacobson )
美國(guó)æ–¯å¦ç¦å¤§å¸(xué)土木與環(huán)境工程系教授ã€å¤§æ°£/能æºé …(xià ng)目主任
é¾”éµ¬ç¨‹æ•™æŽˆï¼šæ‚¨å¥½ã€‚æ‚¨çš„ç ”ç©¶æ¶‰åŠç©ºæ°£æ±¡æŸ“ã€å…¨çƒè®Šæš–å•(wèn)題以åŠé‡å°(duì)它們的大è¦(guÄ«)模清潔ã€å¯å†ç”Ÿèƒ½æºè§£æ±ºæ–¹æ¡ˆã€‚您能介紹一下您用來(lái)解決這些å•(wèn)題的科å¸(xué)方法嗎?
馬克·ZÂ·é›…å…‹å¸ƒæ£®æ•™æŽˆï¼šé¾”æ•™æŽˆï¼Œæ‚¨å¥½ã€‚ç‚ºäº†ç ”ç©¶ç©ºæ°£æ±¡æŸ“å’Œå…¨çƒè®Šæš–å•(wèn)題,我使用了我在éŽ(guò)去 30 å¹´ä¸å»ºç«‹çš„一個(gè)å…¨çƒåˆ°æœ¬åœ°å°ºåº¦çš„ 3D 計(jì)算機(jÄ«)模型(global-through-local scale three-dimensional computer model),稱為 GATOR-GCMOMï¼ˆæ°£é«”ã€æ°£æº¶è† ã€é‹(yùn)輸ã€è¼»å°„—一般循環(huán)ã€ä¸å°ºåº¦ã€å’Œæµ·æ´‹æ¨¡åž‹ï¼‰ã€‚該模型在é“路尺度和全çƒå°ºåº¦ä¹‹é–“的任何尺度上來(lái)模擬空氣污染ã€å¤©æ°£å’Œæ°£å€™ã€‚å®ƒå°‡åœ°çƒæ‹†åˆ†æˆä¸€å€‹(gè)水平地覆蓋地çƒè¡¨é¢çš„å½¼æ¤ç›¸é„°çš„ç›’åç¶²(wÇŽng)æ ¼ï¼Œå¹¶ä¸”é€™äº›ç›’å的層數(shù)å¾žåœ°è¡¨åž‚ç›´å †ç–Šåˆ°å¤©ç©ºä¸60公里。該模型模擬了相關(guÄn)的大氣éŽ(guò)程,包括排放ã€å¤§æ°£æ°£é«”化å¸(xué)ã€å¤§æ°£ç²’å物ç†å’ŒåŒ–å¸(xué)ã€äº‘的形æˆå’Œæ¼”化ã€é™æ°´ã€é¢¨(fÄ“ng)ã€æ¹æµã€é¢¨(fÄ“ng)å’Œæ¹æµçš„æ°£é«”和粒åå‚³è¼¸ã€æº«åº¦ã€å£“力ã€é€šéŽ(guò)大氣的輻射,海洋化å¸(xué)å’Œé‹(yùn)輸ã€å…‰åˆä½œç”¨å’Œå‘¼å¸ä½œç”¨ã€é™¸åœ°æ¤è¢«è¦†è“‹ã€åœŸå£¤æº«åº¦å’Œæ°´åˆ†ç‰ã€‚
ç‚ºäº†ç ”ç©¶å¯å†ç”Ÿèƒ½æºè§£æ±ºæ–¹æ¡ˆï¼Œæˆ‘使用 GATOR-GCMOM 來(lái)é (yù)測(cè)隨時(shÃ)間變化的風(fÄ“ng)ã€å¤ªé™½(yáng)èƒ½å ´(chÇŽng)以åŠå»ºç‘供暖和制冷需求。 ç„¶åŽå°‡é€™äº›æ•¸(shù)據(jù)用作我構(gòu)建的å¦ä¸€å€‹(gè)模型 LOADMATCH 的輸入。 該模型將隨時(shÃ)間變化的能æºéœ€æ±‚與隨時(shÃ)間變化的供應(yÄ«ng)ã€å˜å„²(chÇ”)和需求響應(yÄ«ng)相匹é…。 隨時(shÃ)間變化的能æºéœ€æ±‚是å¦ä¸€å€‹(gè)å¿…é ˆå¾žç•¶(dÄng)å‰å’Œé (yù)計(jì)的未來(lái)需求信æ¯ä¸å¾—出的輸入。LOADMATCH 是一個(gè)“試錯(cuò)â€æ¨¡åž‹ã€‚ å®ƒåŠæ™‚(shÃ)å‰é€²(jìn),試圖平衡供需ç‰ã€‚如果在任何時(shÃ)候都沒(méi)æœ‰å¹³è¡¡ï¼Œå‰‡å¿…é ˆä½¿ç”¨èª¿(dià o)æ•´åŽçš„è¼¸å…¥é‡æ–°å•Ÿå‹•(dòng)模型。 這一直æŒçºŒ(xù)到ç²å¾—ç©©(wÄ›n)定的解決方案,這通常會(huì)有 5 到 10 次嘗試。
這兩種模型都在許多論文ä¸å¾—到了廣泛的評(pÃng)估。
For studying air pollution and global warming problems, I use a global-through-local scale three-dimensional computer model that I built over the past 30 years, called GATOR-GCMOM (Gas, Aerosol, TranspOrt, Radiation-General Circulation, Mesoscale, and Ocean Model). This model simulates air pollution, weather, and climate on any scale between the road scale and the global scale. It breaks up the Earth into a grid of boxes adjacent to each other covering the surface of the Earth horizontally, and layers of such boxes stacked vertically from the surface to 60 kilometers in the sky. The model simulates relevant atmospheric processes, including emissions, atmospheric gas chemistry, atmospheric particle physics and chemistry, cloud formation and evolution, precipitation, winds, turbulence, gas and particle transport by the winds and turbulence, temperatures, pressures, radiation through the atmosphere, ocean chemistry and transport, photosynthesis and respiration, land vegetation cover, soil temperature and moisture, and more.
For studying renewable energy solutions, I use GATOR-GCMOM to predict time-dependent winds, solar fields, and building heating and cooling requirements. These data are then used as inputs into another model that I built, LOADMATCH. This model matches time-varying demand for energy with time-varying supply, storage, and demand-response. The time-varying demand for energy is another input that must be derived from current and projected future demand information. LOADMATCH is a “trial-and-error†model. It marches forward in time, trying to balance demand with supply, etc. If a balance does not occur at any point, the model must be re-started with adjusted inputs. This continues until a stable solution is obtained, which usually occurs after 5 to 10 attempts.
Both models have been evaluated extensively in numerous papers.
龔鵬程教授:公眾普éèª(rèn)ç‚ºï¼Œæ ¸é›»æ˜¯ä¸–ç•Œå¤§åž‹ç¶“(jÄ«ng)濟(jì)體脫碳所必需的。 但是您æ£ç¢ºåœ°å¼·(qiáng)調(dià o)äº†æ ¸é›»çš„é«˜é¢¨(fÄ“ng)險(xiÇŽn)。 æ ¸é›»æ˜¯è„«ç¢³çš„è§£æ±ºæ–¹æ¡ˆå—Žï¼Ÿ
馬克·Z·雅克布森教授:鑒于我們需è¦åœ¨ 8 å¹´å…§(nèi)解決 80% 的氣候å•(wèn)題, 2035 年到 2050 年解決 100%的氣候å•(wèn)題,我們需è¦å°ˆæ³¨äºŽå¯ä»¥ä½Žæˆæœ¬å¿«é€Ÿéƒ¨ç½²ä¸”䏿œƒ(huì)é€ æˆèƒ½æºå®‰å…¨å•(wèn)題的解決方案。ä¸å¹¸çš„æ˜¯ï¼Œæ–°æ ¸é›»å¹¶ä¸æ˜¯é€™äº›è§£æ±ºæ–¹æ¡ˆä¹‹ä¸€ã€‚
事實(shÃ)上,æ·å²ä¸Šå»ºé€ çš„æ¯åº§æ ¸é›»ç«™å¾žè¦(guÄ«)劃到é‹(yùn)營(yÃng)éƒ½éœ€è¦ 10 到 20 年的時(shÃ)間,這比我們解決 80% 的氣候å•(wèn)題所需的時(shÃ)é–“è¦é•·(zhÇŽng)å¾—å¤šã€‚ä»Šå¤©åœ¨è‡ªç”±åŒ–å¸‚å ´(chÇŽng)ä¸Šå»ºé€ çš„å¤§å¤šæ•¸(shù)忇‰(yÄ«ng)å †éƒ½éœ€è¦ 16 到 20 年的時(shÃ)é–“ã€‚æ–°æ ¸é›»çš„å–®ä½èƒ½æºæˆæœ¬ä¹Ÿæ˜¯æ–°çš„陸上風(fÄ“ng)能或公用事æ¥(yè)è¦(guÄ«)模太陽(yáng)能光ä¼ç™¼(fÄ)電的 5-7 å€ï¼Œå¾žè¦(guÄ«)劃到é‹(yùn)營(yÃng)éœ€è¦ 1-3 å¹´ã€‚å› æ¤ï¼Œæ–°æ ¸èƒ½éœ€è¦ 13-19 年的時(shÃ)é–“ï¼Œæˆæœ¬æ˜¯æ–°é¢¨(fÄ“ng)能或太陽(yáng)能的 5-7 å€ã€‚
æ¤å¤–ï¼Œæ ¸èƒ½å˜åœ¨é¢¨(fÄ“ng)能和太陽(yáng)能所沒(méi)有的能æºå®‰å…¨å•(wèn)題。這些å•(wèn)題包括æ¦å™¨æ“´(kuò)æ•£ã€ç†”æ¯€ã€æ”¾å°„性廢物儲(chÇ”)å˜å’Œåœ°ä¸‹éˆ¾ç¤¦é–‹(kÄi)采肺癌ç‰å•(wèn)題。例如,至少有五個(gè)國(guó)å®¶ä»¥æ°‘ç”¨æ ¸èƒ½æˆ–è©¦é©—(yà n)忇‰(yÄ«ng)å †è¨ˆ(jì)劃為幌åç ”åˆ¶äº†æ ¸æ¦å™¨ã€‚曾經(jÄ«ng)å»ºé€ çš„æ‰€æœ‰æ ¸åæ‡‰(yÄ«ng)å †ä¸æœ‰ 1.5% 已經(jÄ«ng)åœ¨ä¸€å®šç¨‹åº¦ä¸Šç†”åŒ–ã€‚æ”¾å°„æ€§å»¢ç‰©å¿…é ˆå„²(chÇ”)å˜æ•¸(shù)åè¬(wà n)年。地下鈾礦開(kÄi)采與暴露于氡å體導(dÇŽo)è‡´çš„è‚ºç™Œå¢žåŠ ç›¸é—œ(guÄn)。
å³ä½¿æ˜¯æ–°ä¸€ä»£å°åž‹æ¨¡å¡ŠåŒ–忇‰(yÄ«ng)å †ï¼ˆSMR)也是一個(gè)å•(wèn)題。它們è¦åˆ° 2030 年左峿ˆ–更晚æ‰èƒ½ä½¿ç”¨ï¼Œé (yù)計(jì)æˆæœ¬å°‡èˆ‡ç¾(xià n)æœ‰åæ‡‰(yÄ«ng)å †ç›¸åŒæˆ–更多,產(chÇŽn)生比當(dÄng)å‰å應(yÄ«ng)å †æ›´å¤šçš„æ”¾å°„æ€§å»¢ç‰©ï¼ˆåŒ…æ‹¬åæ‡‰(yÄ«ng)å †ä¸ä½¿ç”¨çš„ææ–™çš„æ”¾å°„æ€§ï¼‰ï¼Œå¢žåŠ æ¦å™¨æ“´(kuò)散風(fÄ“ng)險(xiÇŽn)ï¼Œä¸æœƒ(huì)改變鈾礦開(kÄi)采風(fÄ“ng)險(xiÇŽn)ï¼Œå¹¶é€ æˆä¸ç¢ºå®šçš„熔毀風(fÄ“ng)險(xiÇŽn)。
Given that we need to solve 80% of the climate problem within eight years and 100% by 2035 to 2050, we need to focus on solutions that can be deployed rapidly at low cost and that do not cause energy security problems. Unfortunately, new nuclear power is not one of these solutions. Virtually every nuclear plant built in history has taken between 10-20 years between planning and operation, which is much longer than we have to solve 80% of the climate problem. Most all reactors being built in liberalized markets today are taking between 16-20 years. New nuclear power also costs 5-7 times per unit energy that of new onshore wind or utility scale solar photovoltaics, which take anywhere from 1-3 years between planning and operation today. So new nuclear takes 13-19 years longer at 5-7 times the cost as new wind or solar.
In addition, nuclear has energy security issues that wind and solar do not. Such issues include weapons proliferation, meltdown, radioactive waste storage, and underground uranium mining lung cancer issues, among others. For example, at least five countries have developed nuclear weapons under the guise of civilian nuclear energy or test reactor programs. One and one-half percent of all nuclear reactors ever build have melted down to some degree. Radioactive waste must be stored for hundreds of thousands of years. Underground uranium mining is associated with enhanced lung cancer from exposure to radon progeny.
Even new-generation small-modular reactors (SMR) are a problem. They will not be available until around 2030 or later and are expected to cost just as much or more, produce more radioactive waste (including radioactivity of materials used in the reactor) than current reactors, increase weapons proliferation risk, not change uranium mining risk, and cause uncertain meltdown risk.
龔鵬程教授:我們é¢è‡¨çš„下一個(gè)å•(wèn)題是關(guÄn)于科å¸(xué)å®¶å°(duì)風(fÄ“ng)çš„å¯æ“´(kuò)展性和太陽(yáng)能。 盡管在公共話語(yÇ”)ä¸ï¼Œé¢¨(fÄ“ng)能和太陽(yáng)能經(jÄ«ng)å¸¸å› ç¼ºä¹ç©©(wÄ›n)定性和在土地上的所å é¢ç©è€Œå—到批評(pÃng)ï¼Œä½†æ‚¨çš„ç ”ç©¶è¡¨æ˜Žæƒ…æ³å¹¶éžå¦‚æ¤ã€‚ä¸å¹¸çš„æ˜¯ï¼Œé™¤éžä¸€å€‹(gè)人是氣候科å¸(xué)專家,å¦å‰‡å¾ˆé›£ç†è§£ç§‘å¸(xué)家們é”(dá)æˆçš„å…±è˜(shÃ)以åŠä»åœ¨è¾¯è«–的內(nèi)容。 å› æ¤æˆ‘çš„å•(wèn)題是:關(guÄn)于å¯å†ç”Ÿèƒ½æºï¼Œæ°£å€™ç§‘å¸(xué)家在哪些方é¢é”(dá)æˆäº†å»£æ³›å…±è˜(shÃ),哪些方é¢ä»å˜åœ¨æ¿€çƒˆçˆ(zhÄ“ng)論?
馬克·Z·雅克布森教授:早在 2009 年,當(dÄng)我們?yÅu)æ§æ¾œç¼°è´«Ç–è°ç²‹â‚¬(gè) 100% å¯å†ç”Ÿèƒ½æºè¨ˆ(jì)劃時(shÃ),公用事æ¥(yè)和能æºç ”究人員èª(rèn)為,如果電網(wÇŽng)ä¸çš„å¯å†ç”Ÿèƒ½æºè¶…éŽ(guò) 20%,就ä¸å¯èƒ½ä¿æŒé›»ç¶²(wÇŽng)ç©©(wÄ›n)定。經(jÄ«ng)éŽ(guò)多年的é¡å¤–ç ”ç©¶å’Œå¯å†ç”Ÿèƒ½æºåœ¨è¨±å¤šåœ°æ–¹çš„高滲é€çŽ‡ç¤ºä¾‹ï¼Œè¨Žè«–å·²ç¶“(jÄ«ng)發(fÄ)生了變化。今天的å•(wèn)é¡Œåªæ˜¯æ“有 100% å¯å†ç”Ÿé›»ç¶²(wÇŽng)與 80% 或 90% å¯å†ç”Ÿé›»ç¶²(wÇŽng)ç›¸æ¯”ï¼Œæˆæœ¬æ˜¯å¦æ›´é«˜ã€‚å› æ¤ï¼Œå‡ºç¾(xià n)了很多趨åŒã€‚趨åŒçš„一個(gè)é‡è¦åŽŸå› æ˜¯é›»æ± ã€å…¶ä»–類型的電力å˜å„²(chÇ”)以åŠé¢¨(fÄ“ng)能和太陽(yáng)能發(fÄ)電的效率æé«˜å’Œæˆæœ¬é™ä½Žã€‚æ¤å¤–,需求響應(yÄ«ng)ç‰ç¶²(wÇŽng)æ ¼ç®¡ç†å·¥å…·ä¹Ÿè®Šå¾—越來(lái)è¶Šæ™®é。
ç§‘å¸(xué)家們也普éèª(rèn)為風(fÄ“ng)能和太陽(yáng)能將æˆç‚ºä¸»è¦çš„å¯å†ç”Ÿèƒ½æºã€‚大多數(shù)äººéƒ½åŒæ„熱泵ã€é›»å‹•(dòng)汽車ã€é›»ç£çˆå’Œèƒ½æºæ•ˆçŽ‡æ˜¯æœªä¾†(lái)的關(guÄn)éµã€‚大多數(shù)人進(jìn)一æ¥åŒæ„輸電網(wÇŽng)éœ€è¦æ“´(kuò)大,我們需è¦å¤§é‡çš„æµ·ä¸Šé¢¨(fÄ“ng)電。最åŽï¼Œå¤§å¤šæ•¸(shù)äººåŒæ„我們需è¦ä½¿å¤§éƒ¨åˆ†èƒ½æºé›»æ°£åŒ–。
越來(lái)越多的科å¸(xué)å®¶ä¹ŸåŒæ„,我們需è¦å°ˆæ³¨äºŽèŒƒåœæ›´çª„的技術(shù)。然而,一些科å¸(xué)å®¶å …(jiÄn)æŒä½¿ç”¨ä¸å¤ªæœ‰ç”¨æˆ–?qÅ«)å¶‹H上有害的技術(shù),例如碳æ•ç²ã€ç›´æŽ¥ç©ºæ°£æ•ç²ã€ç”Ÿç‰©èƒ½æºå’Œ/æˆ–æ ¸èƒ½ã€‚å› æ¤ï¼Œä»Šå¤©çš„主è¦åˆ†æ§é»ž(diÇŽn)ï¼Œæ˜¯æˆ‘å€‘æ˜¯å¦æ‡‰(yÄ«ng)該奉行“所有技術(shù)â€çš„æ”¿ç–,其ä¸è€ƒæ…®åˆ°æ¯ä¸€ç¨®æŠ€è¡“(shù),å³ä½¿æ˜¯é‚£äº›å¢žåŠ ç©ºæ°£æ±¡æŸ“æˆ–èƒ½æºä¸å®‰å…¨çš„æŠ€è¡“(shù),還是“風(fÄ“ng)-æ°´-太陽(yáng)能(wind-water-solar)†(WWS)â€æ”¿ç–ï¼Œå…¶ä¸æˆ‘們專注于清潔和å¯å†ç”Ÿèƒ½æºï¼ˆå¾žè€Œæ¶ˆé™¤å°Ž(dÇŽo)致空氣污染和全çƒè®Šæš–的化å¸(xué)物質(zhì))并且ä¸å˜åœ¨èƒ½æºä¸å®‰å…¨å•(wèn)題。
Back in 2009, when we produced our first 100% renewable energy plan for the world, utilities and energy researchers believed it was not possible to keep the grid stable with more than 20% renewables on the grid. After years of additional studies and examples of renewables in high penetrations in many locations, the discussion has shifted. Today the question is only whether it costs more to have a 100% renewable grid versus an 80% or 90% renewable grid. Thus, a lot of convergence has occurred. A big reason for the convergence is the improved efficiency and lower cost of batteries, other types of electricity storage, and wind and solar electricity generation. In addition, grid management tools, such as demand response, have become more commonplace.
Scientists are also in large agreement that wind and solar will be the major renewable energy sources. Most all agree that heat pumps, electric vehicles, induction cooktops, and energy efficiency are keys to the future. Most agree further that the transmission grid needs to be expanded and that we need a lot of offshore wind. Finally, most agree that we need to electrify most energy.
More and more, scientists are also agreeing that we need to focus on a narrower set of technologies. However, some scientists are holding out to use technologies that are not so useful or are actually harmful, such as carbon capture, direct air capture, bioenergy, and/or nuclear power. Thus, the main point of disagreement today is whether we should pursue an “all-of-the-above†policy, in which every technology is considered, even those that increase air pollution or energy insecurity, or a “wind-water-solar (WWS)†policy, in which we focus on energy sources that are both clean and renewable (thus eliminate chemicals that cause both air pollution and global warming) and do not have energy insecurity issues.
龔鵬程教授:最近,您為ä¸åœ‹(guó)發(fÄ)布了應(yÄ«ng)å°(duì)å…¨çƒè®Šæš–ã€ç©ºæ°£æ±¡æŸ“和能æºä¸å®‰å…¨çš„解決方案。 您的主è¦ç™¼(fÄ)ç¾(xià n)是什么?
馬克·Z·雅克布森教授:我們最近發(fÄ)表了一篇關(guÄn)于如何將 145 個(gè)國(guó)家轉(zhuÇŽn)變?yÅu)?100% 清潔ã€å¯å†ç”Ÿèƒ½æºå’Œç”¨äºŽæ‰€æœ‰èƒ½æºç›®çš„çš„å˜å„²(chÇ”)的論文:: https://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-145-Countries.html
該文件包括一個(gè)é‡å°(duì)ä¸åœ‹(guó)的計(jì)劃,總çµ(jié)如下:https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/21-WWS-China.pdf
與其他國(guó)家一樣,ä¸åœ‹(guó)的計(jì)åŠƒè¦æ±‚所有能æºéƒ¨é–€ï¼ˆé›»åŠ›ã€äº¤é€šã€å»ºç‘ã€å·¥æ¥(yè)ã€è¾²(nóng)æ¥(yè)/æž—æ¥(yè)/æ¼æ¥(yè)å’Œè»äº‹ï¼‰å‘ 100% 風(fÄ“ng)-æ°´-太陽(yáng)能 (WWS) å’Œå˜å„²(chÇ”)éŽ(guò)渡.å˜å„²(chÇ”)的主è¦é¡žåž‹æ˜¯é›»ã€ç†±ã€å†·å’Œæ°«å˜å„²(chÇ”)。該計(jì)åŠƒé‚„è¦æ±‚æ“´(kuò)大輸電并使用需求響應(yÄ«ng)管ç†ä¾†(lái)å¹«åŠ©ä¿æŒé›»ç¶²(wÇŽng)ç©©(wÄ›n)定。
該計(jì)劃å°(duì)ä¸åœ‹(guó)的主è¦çµ(jié)論是,æ¯å¹´å°‡æœƒ(huì)挽救 110 è¬(wà n)人å…å—空氣污染的影響,消除ä¸åœ‹(guó)èƒ½æºæº«å®¤æ°£é«”排放(包括æ¯å¹´ 149 億噸二氧化碳),創(chuà ng)é€ 900 è¬(wà n)é•·(zhÇŽng)期ã€å…¨è·å·¥ä½œæ¯”失去的更多,并且åªéœ€è¦è©²åœ‹(guó) 0.57% 的土地用于新的公用太陽(yáng)能光ä¼å’Œ CSP å·¥å» çš„è¶³è·¡ï¼Œä»¥åŠ 0.97% 的陸上風(fÄ“ng)力渦輪機(jÄ«)之間的間è·ï¼ˆé€™æ¨£çš„é–“è·å€(qÅ«)域å¯ç”¨äºŽå¤šç¨®ç”¨é€”)。
è³‡æœ¬æˆæœ¬ç´„為 13 è¬(wà n)億美元。但是,æ¯å¹´çš„èƒ½æºæˆæœ¬å°‡å¾žæ¯å¹´ 4.2 美元下é™åˆ° 1.5 è¬(wà n)å„„ç¾Žå…ƒï¼ˆä¸‹é™ 63%ï¼‰ï¼Œæˆ–è€…åƒ…åœ¨èƒ½æºæˆæœ¬æ–¹é¢æ¯å¹´å°±å¯ä»¥ç¯€(jié)çœ 2.7 è¬(wà n)å„„ç¾Žå…ƒã€‚é€™ä¸»è¦æ˜¯ç”±äºŽ WWS 系統(tÇ’ng)的能æºéœ€æ±‚減少了 53.4%。由æ¤ç”¢(chÇŽn)ç”Ÿçš„èƒ½æºæˆæœ¬å›žæ”¶æ™‚(shÃ)間僅為五年左å³ã€‚
由于 WWS é¡å¤–節(jié)çœäº†å¥åº·å’Œæ°£å€™æˆæœ¬ï¼Œèƒ½æºçš„總社會(huì)æˆæœ¬ï¼ˆèƒ½æºåŠ ä¸Šå¥åº·åŠ ä¸Šæ°£å€™æˆæœ¬ï¼‰å°‡å¾žæ¯å¹´ 23 美元下é™åˆ° 1.5 è¬(wà n)å„„ç¾Žå…ƒï¼ˆä¸‹é™ 93%ï¼‰ï¼Œå› æ¤ç¤¾æœƒ(huì)æˆæœ¬å›žæ”¶æ™‚(shÃ)é–“æ›´çŸè¶…éŽ(guò)一年。
Yes, we recently published a paper on how to transition 145 countries to 100% clean, renewable energy and storage for all energy purposes:https://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-145-Countries.html
The paper includes a plan for China, which is summarized here:
https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/21-WWS-China.pdf
The plan for China, like for other countries, calls for a transition across all energy sectors (electricity, transportation, buildings, industry, agriculture/forestry/fishing, and the military) to 100% wind-water-solar (WWS) and storage. The main types of storage are electricity, heat, cold, and hydrogen storage. The plan also calls for expanded transmission and to use demand response management to help keep the grid stable.
The main conclusions of the plan for China are that it would save 1.1 million lives from air pollution each year, eliminate China’s emissions of greenhouse gases from energy (including 14,900 million tonnes of carbon dioxide per year), create nine million more long-term, full-time jobs than lost and require only 0.57% of the country’s land for the footprint of new utility solar PV and CSP plants and 0.97% for the spacing between onshore wind turbines (such spacing area can be used for multiple purposes). The capital cost would be ~$13 trillion. However, annual energy costs would decline from $4.2 to $1.5 trillion per year (by 63%), or a savings of $2.7 trillion per year in energy costs alone. This is due mostly to the 53.4% reduction in energy requirements with a WWS system. The resulting energy cost payback time is only about five years. Because of the additional health and climate cost savings due to WWS, the total social cost of energy (energy plus health plus climate costs) would decline from $23 to $1.5 trillion per year (by 93%), so the social cost payback time is less than one year.
龔鵬程,1956年生于臺(tái)北,臺(tái)ç£å¸«èŒƒå¤§å¸(xué)åšå£«ï¼Œç•¶(dÄng)代著åå¸(xué)è€…å’Œæ€æƒ³å®¶ã€‚著作已出版一百五å多本。
辦有大å¸(xué)ã€å‡ºç‰ˆç¤¾ã€é›œå¿—ç¤¾ã€æ›¸é™¢ç‰ï¼Œå¹¶è¦(guÄ«)劃城市建è¨(shè)ã€ä¸»é¡Œåœ’å€(qÅ«)ç‰å¤šè™•。講å¸(xué)于世界å„地。并在北京ã€ä¸Šæµ·ã€æå·žã€è‡º(tái)北ã€å·´é»Žã€æ—¥æœ¬ã€æ¾³é–€ç‰åœ°èˆ‰è¾¦éŽ(guò)書法展。ç¾(xià n)為ä¸åœ‹(guó)å”ååšç‰©é¤¨åè½(yù)館長(zhÇŽng)ã€ç¾Žåœ‹(guó)龔鵬程基金會(huì)主å¸ã€‚
ç‰¹åˆ¥è²æ˜Žï¼šä»¥ä¸Šå…§(nèi)容(å¦‚æœ‰åœ–ç‰‡æˆ–è¦–é »äº¦åŒ…æ‹¬åœ¨å…§(nèi))為自媒體平臺(tái)“網(wÇŽng)易號(hà o)â€ç”¨æˆ¶ä¸Šå‚³å¹¶ç™¼(fÄ)布,本平臺(tái)僅æä¾›ä¿¡æ¯å˜å„²(chÇ”)æœå‹™(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.